Abstract:
A bale processing apparatus for processing a bale of biomass that is bound by a binding includes a cutting device that is operable to automatically cut the binding. The bale processing apparatus also includes a binding remover that is operable to automatically move the binding from the bale after the binding has been cut by the cutting device. Furthermore, the bale processing apparatus includes an arranging member that cooperates with the binding remover to automatically arrange the binding generally into a predetermined position.
Abstract:
A method and apparatus for removing wires from a bale includes a conveyor system for moving one or more bales and a de-wiring station positioned adjacent the conveyor system. The de-wiring station includes a robot with an end tool. A bale that is bound by one or more wires is transferred by the conveyor system to a position proximate the de-wiring station. The robot with end tool moves to sense the location of the wires, cut the wires, collect the wires and deposit the wires in a collection hopper.
Abstract:
An apparatus for stripping metal from a cathode plate, the apparatus comprising stripping means adapted for positioning between the metal and the cathode plate in order to separate the metal from the cathode plate, and wherein movement of the stripping means is achieved through movement of a robotic arm.
Abstract:
A method for manufacturing wireless communication devices for use in tracking or identifying items comprises cutting techniques that allow the size of antenna elements for the wireless communication device to be adjusted. Rollers cut tabs that form the antenna elements. In one embodiment, a plurality of rollers are used, each one effecting a different cut whose position may be adjusted so as to shorten or lengthen the antenna element. In another embodiment, the rollers are independently positionable to shorten or lengthen the antenna element. A radiator may be configured to assess a capacitance of the antenna elements prior to cutting to determine an appropriate size for the antenna elements.
Abstract:
An apparatus for stripping metal from a cathode plate, the apparatus comprising stripping means adapted for positioning between the metal and the cathode plate in order to separate the metal from the cathode plate, and wherein movement of the stripping means is achieved through movement of a robotic arm.
Abstract:
A method for manufacturing wireless communication devices for use in tracking or identifying other items comprises a number of cutting techniques that allow the size of the antenna for the wireless communication device. Further, the chip for the wireless communication device is nested so as to be flush with the surface of the substrate of the wireless communication device. Rollers cut the tabs that form the antenna elements. In a first embodiment, a plurality of rollers are used, each one effecting a different cut whose position may be phased so as to shorten or lengthen the antenna element. In a second embodiment, the rollers are independently positionable to shorten or lengthen the antenna element.
Abstract:
A method for manufacturing antenna elements for use with wireless communication devices comprises a number of cutting techniques that allow the size of the antenna elements to be adjusted. Rollers cut the tabs that form the antenna elements. In a first embodiment, a plurality of rollers are used, each one effecting a different cut whose position may be phased so as to shorten or lengthen the antenna element. In a second embodiment, the rollers are independently positionable to shorten or lengthen the antenna element.
Abstract:
A method and apparatus for removing wires from a bale includes a conveyor system for moving one or more bales and a de-wiring station positioned adjacent the conveyor system. The de-wiring station includes a robot with an end tool. A bale that is bound by one or more wires is transferred by the conveyor system to a position proximate the de-wiring station. The robot with end tool moves to sense the location of the wires, cut the wires, collect the wires and deposit the wires in a collection hopper.
Abstract:
A method for manufacturing wireless communication devices for use in tracking or identifying other items comprises a number of cutting techniques that allow the size of the antenna for the wireless communication device. Further, the chip for the wireless communication device is nested so as to be flush with the surface of the substrate of the wireless communication device. Rollers cut the tabs that form the antenna elements. In a first embodiment, a plurality of rollers are used, each of effecting a different cut whose position may be phased so as to shorten or lengthen the antenna element. In a second embodiment, the rollers are independently positionable to shorten or lengthen the antenna element.
Abstract:
An apparatus for automatically feeding an oil filter(s) into a crushing zone to shear a canister from a connector plate. The apparatus feed the oil filters into the crushing zone one at a time for the crushing by a movable wall against a fixed wall (211) to flatten the canister while blade shears the canister from the connector plate. The apparatus enables capture of oil and recycling of the canister and connector plate.