Abstract:
The present invention relates to core-shell polymers having a hydrophilic copolymer shell, and a high level of core material of from 75 to 95 weight percent. The hydrophilic shell provides better coverage of the core resulting in better powder properties such as anti-blocking. The hydrophilic shell also allows for a thinner shell and a larger elastomeric core. Core-shell polymers of the invention are especially useful as impact modifiers for plastic materials.
Abstract:
A test device for detecting or quantifying an analyte in a test sample includes an absorbent material having separate contact and measurement portions. The contact portion is positioned at or proximate to a first end of the absorbent material. The measurement portion has a receptor for a conjugate of an analyte analog and marker-encapsulating liposomes. In a method for using the test device, a binding material specific for the analyte is combined with the liposome-analyte analog conjugate and the test sample to form a test mixture. The mixture is incubated for a time sufficient to permit competition between any analyte present and the conjugate for the binding material. Following incubating, the mixture is allowed to traverse the absorbent material from the contact portion through the measurement portion of the absorbent material. Following traversal by the test mixture, the presence or amount of marker in the measurement portion of the absorbent material is then detected and correlated with the presence or amount, respectively, of the analyte in the sample. Also disclosed are liposomes encapsulating an electroactive marker used in conjunction with a test device as described, but which includes an electrochemical measurement portion in place of the measurement portion described above. Test devices and methods employing electrochemical detection or quantification of an electroactive marker corresponding to the amount of analyte in a sample may be either amperometric or potentiometric.