Abstract:
An apparatus for manufacturing stiffness-taper tubing includes a die having an extrusion hole, a die holder for holding the die, and a mandrel mounted inside the die holder and that fits in the extrusion hole. The apparatus forms stiffness-taper tubing by switching between and supplying resins having different stiffnesses over the mandrel from a plurality of resin-supply ports formed in the die holder such that the stiffness gradually changes in the lengthwise direction. A mandrel insertion hole connecting to the extrusion hole is formed in the die holder and the mandrel is mounted in this mandrel insertion hole. The plurality of resin-supply ports open to a cylindrical space formed between the inner surface of the mandrel insertion hole and the outer surface of the mandrel at a position separated from the extrusion hole in the die, and the plurality of resins flow together in this space.
Abstract:
A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. The pulverized particulates also can be more intimately mixed than mixtures which are provided by only melt mixing, and can be melt processed without a significant delay in achieving phase inversion. The pulverized particulates also provide a stable microstructure.
Abstract:
The invention is to perform operations from sealing of a honeycomb core with a thermosetting sealing material having an adhesive property to its hardening in one step, prevent a resin from flowing into cells of the honeycomb core during resin impregnating operation, and thereby mold low-cost honeycomb sandwich components by using RTM technique which is adopted in molding solid materials, for instance. Dry fabric sheets are stacked on both sides of a honeycomb core with thermosetting sealing members having an adhesive property placed in between, and the sealing members and the dry fabric sheets are heated at the curing temperature of the sealing members to cause initial hardening of the sealing members and to dry the dry fabric sheets. Then, the dry fabric sheets are impregnated with a thermosetting resin and the resin impregnated into the dry fabric sheets is hardened by hot-pressing an entire assembly thus prepared under specific conditions.
Abstract:
A process for making a multiphase polymeric film having a lamellar structure with controlled permeability and/or controlled mechanical properties, comprising the steps of: preparing a molten blend made of a first polymer phase dispersed in a second polymer phase which is a matrix polymer phase incompatible with the said first phase and of a compatibilizer selected from the group consisting of DEM, MAH, DEM-g-SEBS, MAH-g-SEBS, DEM-g-PP and MAH-g-PP; extruding the molten blend through a flat die provided with an exit and stretching the so extruded blend downwards said exit at a preselected stretching ratio to produce the said multiphase polymeric film, and solidifying the extruded film sufficiently rapidly to preserve the lamellar structure and the multiphase polymeric films thereby obtained. Granules with a lamellar structure are obtained by grinding the so obtained multiphase polymeric film and are useful for preparing shaped articles with improved physical properties.
Abstract:
A method for the metered discharge of a string of a viscous medium, in particular of an abrasive medium containing solid particles, via a nozzle, in which the quantity of the medium is discharged as a function of the speed of the nozzle and is increased or reduced as a function of the acceleration or deceleration of the nozzle.
Abstract:
Embossed oriented thermoplastic films and a method of making same are described. The embossed oriented thermoplastic films have substantially the same mechanical properties as unembossed oriented thermoplastic films. The method includes providing an oriented thermoplastic film having first and second major surfaces, softening at least one of the first and second major surfaces to produce a softened surface, embossing the softened surface to produce an embossed oriented thermoplastic film, and cooling the embossed oriented thermoplastic film.
Abstract:
A process and apparatus is provided for automatically and continuously producing a mass of moldings. A continuous molding is manufactured by injecting a solid solution in order of precedence into a plurality of molds circulating in a line along an endless track and by solidifying the injected solution. The solution is preferably vinyl chloride resin or another synthetic resin. After the solution solidifies the mold is automatically removed from the molding. The continuous molding consists of a number of moldings open at the bottoms and connected end to end by a top plate, molded at the same time.
Abstract:
A process for the preparation of a semiconducting shield composition comprising: (i) introducing an elastomer into a melt/mixer having a melting zone and a mixing zone; (ii) introducing particulate conductive carbon black into the melt/mixer in an amount of about 10 to about 25 percent by weight based on the weight of the resin; (iii) melting the elastomer in the melting zone; (iv) mixing the carbon black and the molten elastomer in the mixing zone; (v) optionally, pelletizing the mixture of carbon black and elastomer; (vi) recycling the mixture of carbon black and elastomer from step (iv) or the pellets from step (v) to a melt/mixer; (vii) introducing additional particulate semiconductive carbon black into the melt/mixer in an amount sufficient to provide a total amount of carbon black in the range of about 25 to about 50 percent by weight based on the weight of the resin; (viii) melting and mixing the mixture from step (vii); and (ix) pelletizing or extruding the mixture from step (viii).
Abstract:
A product obtained from the use of sweeping materials, more particularly by means of recycling domiciliary sweepings. The product obtained by the present invention may be: posts, tables, rods, braces, moldings, cords, roadside ditches, boards or plates (like agglomerated wood) for the manufacture of all type of mouldable products such as, rods, sewers, posts, and any other product that can be made from a mouldable plastic-based material. It comprises of: a first component containing plastic polyethylene and polypropylene materials in a proportion that ranges between 25% and 30% of the final weight of the product; a second component of plastic PET type materials ranges between 30% and 40% of the total weight of the product; and a third component selected from: PVC, styrene, polyamides, polycarbonates, polystyrene, ABS, aluminum and cardboard. A procedure for obtaining a product from sweeping materials is also an object of the present invention, including the step of: separating from sweepings materials plastic materials found without classifying nor washing them; crushing this material in a blades mill; simultaneously warming up and extruding said material to a temperature of up to 300° C.
Abstract:
The present invention is a continuous in-line compounding and extrusion system that does not require pre-dried wood flour or pelletized feed stock of cellulosic/polymer composite materials in order to produce net shapes from cellulosic/polymer composite materials. A preferred embodiment of the present invention utilizes automated loss-in-weight feeders to dispense wood flour and all of the other cellulosic/polymer composite materials into a compounder. The compounder blends the cellulosic/polymer composite materials into a composite melt. The composite melt is continuously devolitalized as it travels through the compounder, a transition chute, and a finish extruder. The composite melt is then forced through a profile die which is fitted to the finish extruder in order to achieve a net shape.