摘要:
A watercraft is disclosed that includes a hull having port and starboard sides and a propulsion system that generates a stream of pressurized water through a nozzle. A helm operatively connects to the nozzle, whereby turning the helm turns the nozzle. At least one rudder connects to either or both of the port or starboard sides. The rudder is capable of pivoting inwardly and outwardly and can also be moved upwardly and downwardly with respect to the side to which it is connected. The rudder is located a certain distance from the respective side of the hull, which allows the rudder to utilize its inner and outer surfaces to assist in steering the watercraft by deflecting water flowing thereacross. Also, a linking element can connect the nozzle to the rudder. An off-power steering system is also disclosed.
摘要:
The invention discloses a retractable rudder device attached to the water jet nozzle of a watercraft. In a non-deployed condition, the rudders are latched in position and completely out of the water stream underneath the craft. When deployed, two rudders aligned with the axis of the steering nozzle, are rotated into position via springs and cables. The rudders pivot independently of each other, and will retract if contact with an underwater object is made or the craft is beached. A cable system connected to a control unit lowers the rudders into the deploy position. The cable system is actuated by a hydraulic cylinder using fluid pressure from the jet pump. The deployment rate can be varied by altering the fluid pressure in the hydraulic cylinder, and is a function of boat speed. Deployment of the retractable rudder system is determined by an electronic control system. Input variables such as steering rates, jet pump pressure, throttle position, engine operation, immersion of the craft in the water determine if the rudder system is deployed. An anticipatory steering module is included in the controller to provide dynamic steering conditions under which the rudder system is deployed prior to full lock.
摘要:
The invention relates to an auxiliary system for providing positive steering to marine crafts using jet propulsion systems, typically personal jet driven watercrafts such as jet boats and jet skis. In one embodiment, it includes, among other features, a combination of keel members attached to a stern section of a hull. The keels are interconnected using tie rods to the directional steering drive assembly. In other embodiments, the keels are instead attached directly to the directional nozzle or integrally made with the nozzle, and where a hood is included in the directional nozzle assembly, notches may be included in the keels to allow for full operation of the hood into its lowest position.
摘要:
A vessel propulsion system having a suction casing (4) configured with a suction inlet (4a) opening at a vessel bottom (1b), a suction flow path (4b) inclined to rearwardly ascend from the suction inlet (4a), and an impeller chamber (4c) formed horizontal, and disposed at a bottom of a stern, a delivery casing (10) connected to the suction casing (4) and submerged under a draft of the stern, and a set of forward and reverse rotatable axial flow blades (8) disposed in the impeller chamber (4c) of the suction casing (4).
摘要:
A control mechanism for a watercraft includes a selectively movable flap connected to an actuator, which moves the flap into and out of the flow of water to affect steering, deceleration and trimming. The flap is recessed with respect to the lower surface of the hull so that it does not create drag at high speeds. The flap may be a portion of the ride plate, may be disposed in a recess in the bottom of the hull, or may be disposed on the stern above the bottom of the hull.