Abstract:
This invention relates to a process for separating and isolating saturated hydrocarbons from olefins, and in particular, to a process for separating and isolating saturated hydrocarbons from olefins in a Fisher-Tropsch stream. There is provided a process for separating olefins from saturated hydrocarbons in a feedstock, comprising: a) contacting a feedstock comprising olefins and saturated hydrocarbons, such as paraffins, with a linear polyaromatic compound under conditions effective to form a reaction mixture comprising linear polyaromatic compound-olefin adducts and saturated hydrocarbons; b) separating the linear polyaromatic compound-olefin adducts from the saturated hydrocarbons in the reaction mixture to form a saturated hydrocarbon stream and an adducted olefin stream; c) dissociating the linear polyaromatic compound-olefin adducts to form linear polyaromatic compounds and an olefin composition; and optionally d) separating the linear polyaromatic compound formed in step c) from the olefin composition; whereby the olefin composition is enriched in the concentration of olefins over the concentration of olefins in the feedstock and the saturated hydrocarbon stream is enriched in saturated hydrocarbons over the concentration of saturated hydrocarbons in the feedstock.
Abstract:
Methods for separating di-olefins from mono-olefins, and olefins from non-olefins such as paraffins, oxygenates and aromatics; are provided. The methods use metal salts which complex both mono-olefins and di-olefins, but which selectively complex di-olefins in the presence of mono-olefins. The metal salts are dissolved or suspended in ionic liquids, which tend to have virtually no vapor pressure. Preferred salts are Group IB salts, more preferably silver and copper salts. A preferred silver salt is silver tetrafluoroborate. A preferred copper salt is silver CuOTf. Preferred ionic liquids are those which form stable solutions, suspensions or dispersions of the metal salts, which do not dissolve unwanted non-olefins, and which do not isomerize the mono- or di-olefins. The equivalents of the metal salt can be adjusted so that di-olefins are selectively adsorbed from mixtures of mono- and di-olefins. Alternatively, both mono- and di-olefins can be adsorbed, and the mono-olefins selectively desorbed. The latter approach can be preferred when non-olefins are also to be separated. The mono- and di-olefin-containing mixture can be in the gas phase or in the liquid phase. The flow of mono- and di-olefin-containing mixture over/through the ionic liquid can be, for example, co-current, counter-current, or staged in stirred tanks, with countercurrent being preferred.
Abstract:
The present invention is directed to the use of hydroxylamine, its acid salts or mixtures thereof to increase carbonyl extraction during the basic washing of hydrocarbons containing oxygenated compounds. More specifically, oxygenated compounds such as carbonyl containing organics are typically an impurity and have a tendency to polymerize, producing fouling elements during processing. The hydroxylamine and its salts are quite effective for increasing the extraction of the carbonyl impurities during the caustic washing of hydrocarbon streams.
Abstract:
This invention relates to a process for separating and isolating olefins from saturated hydrocarbons, and in particular, to a process for separating and isolating olefins from saturated hydrocarbons in a Fisher-Tropsch stream.
Abstract:
This invention relates to a process for separating and isolating saturated hydrocarbons from olefins, and in particular, to a process for separating and isolating saturated hydrocarbons from olefins in a Fisher-Tropsch stream. There is provided a process for separating olefins from saturated hydrocarbons in a feedstock, comprising: a) contacting a feedstock comprising olefins and saturated hydrocarbons, such as paraffins, with a linear polyaromatic compound under conditions effective to form a reaction mixture comprising linear polyaromatic compound-olefin adducts and saturated hydrocarbons; b) separating the linear polyaromatic compound-olefin adducts from the saturated hydrocarbons in the reaction mixture to form a saturated hydrocarbon stream and an adducted olefin stream; c) dissociating the linear polyaromatic compound-olefin adducts to form linear polyaromatic compounds and an olefin composition; and optionally d) separating the linear polyaromatic compound formed in step c) from the olefin composition; whereby the olefin composition is enriched in the concentration of olefins over the concentration of olefins in the feedstock and the saturated hydrocarbon stream is enriched in saturated hydrocarbons over the concentration of saturated hydrocarbons in the feedstock.