Abstract:
An array of membranes comprising amphipathic molecules is formed using an apparatus comprising a support defining an array of compartments. Volumes comprising polar medium are provided within respective compartments and a layer comprising apolar medium is provided extending across the openings with the volumes. Polar medium is flowed across the support to displace apolar medium and form a layer in contact with the volumes, forming membranes comprising amphipathic molecules at the interfaces. In one construction of the apparatus, the support that comprises partitions which comprise inner portions and outer portions. The inner portions define inner recesses without gaps therebetween that are capable of constraining the volumes comprising polar medium contained in neighbouring inner recesses from contacting each other. The outer portions extend outwardly from the inner portions and have gaps allowing the flow of an apolar medium across the substrate.
Abstract:
Apparatuses and methods are described herein for processing polynucleotides in a sealed path environment. The apparatuses include optical sensors to monitor operations and to track material usage for good manufacturing practice.
Abstract:
Provided herein is generally tubular container, preferably including a plurality of reservoirs defined therein. The container can be adapted for acoustic ejection of a fluid disposed within at least one of the reservoirs of the plurality of reservoirs. Alternatively, the container can be adapted for extraction of a fluid disposed within at least one of the reservoirs of the plurality of reservoirs using a non-acoustic liquid handling method.
Abstract:
An activity frame comprising a first or outer ring mounted between a pair of opposed bearings in a opposed pair of supports, for example upstanding members of a frame, the first bearings having a having a first common axis; a second or middle ring mounted between opposed bearings on the first ring, the bearings having a second common axis orthogonal to the first common axis; a third or inner ring mounted between opposed bearings on the second ring, the bearings having a third common axis orthogonal to the second axis provided with demountable restraining means to limit the movement of two or more of the rings and demountable bars to fix one or more of the rings to the frame or other fixed object.
Abstract:
The present invention relates to an apparatus and methods for performing chemical reactions. In particular, the present invention relates to an apparatus for heating chemical reaction mixtures. The apparatus applies one or more semiconductor based microwave generators making the apparatus suitable for parallel processing of chemical reaction mixtures. The invention further relates to methods for performing chemical reactions, e.g. methods for heating a plurality of samples simultaneously or sequentially, methods for monitoring a microwave heated chemical reaction, and methods where the optimum conditions with respect to parameters, such frequency and applied power can be determined for the system consisting of apparatus plus sample.
Abstract:
Devices and methods are provided for spotting an array with fluid. Arrays produced by such methods are also provided. In one aspect of the invention, a spotter device for spotting a plurality of fluids into an array is described, the spotter device comprising a plurality of reservoirs provided in a first configuration, each reservoir holding its respective fluid, a print head having a plurality of positions provided in a second configuration, the second configuration being different from the first configuration, a plurality of tubes, each tube configured to provide fluid communication from a reservoir at a first end of the tube to a position in the print head at the second end of the tube, and a pump for pumping fluid through the tubes from the reservoir to the print head.
Abstract:
A method and an array filling system for loading a plurality of disparate sample containers, the sample containers comprising an integral structure. Each receptacle is characterized by a hydrophilic surface, and the receptacles are separated by a hydrophobic surface. The system has a liquid transfer device capable of holding liquid and adapted for motion to cause sequential communication of liquid held in the liquid transfer device with successive receptacles of the array by dragging the liquid across the hydrophobic surface.
Abstract:
Embodiments provided herein describe methods and systems for evaluating electrochromic material processing conditions. A substrate having a plurality of site-isolated regions defined thereon is provided. A first electrochromic material, or a first electrochromic device stack, is formed above a first of the plurality of site-isolated regions using a first set of processing conditions. A second electrochromic material, or a second electrochromic device stack, is formed above a second of the plurality of site-isolated regions using a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.
Abstract:
A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries held in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow (from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.
Abstract:
The present invention relates to protein chips useful for the large-scale study of protein function where the chip contains densely packed reaction wells. The invention also relates to methods of using protein chips to assay simultaneously the presence, amount, and/or function of proteins present in a protein sample or on one protein chip, or to assay the presence, relative specificity, and binding affinity of each probe in a mixture of probes for each of the proteins on the chip. The invention also relates to methods of using the protein chips for high density and small volume chemical reactions. Also, the invention relates to polymers useful as protein chip substrates and methods of making protein chips. The invention further relates to compounds useful for the derivatization of protein chip substrates.