Abstract:
A process/apparatus is disclosed for continuously separating a liquid medium comprising diluent and unreacted monomers from a polymerization effluent comprising diluent, unreacted monomers and polymer solids, comprising a continuous discharge of the polymerization effluent from a slurry reactor through a discharge valve and transfer conduit into a first intermediate pressure flash tank with a conical bottom defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the slurry/polymer solids and an exit seal chamber of such diameter (d) and length (I) as to maintain a desired volume of concentrated polymer solids/slurry in the exit seal chamber such as to form a pressure seal while continuously discharging a plug flow of concentrated polymer solids/slurry bottom product of said first flash tank from the exit seal chamber through a seal chamber exit reducer with inclined sides defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the polymer solids which remain after removal of about 50 to 100% of the inert diluent therefrom to a second flash tank at a lower pressure.
Abstract:
The invention relates to a process and a device that are suitable for the preparation of a polymer based on an olefinic monomer and optionally one or more comonomers that are copolymerisable therewith, in a horizontal reactor, divided into at least two zones and fitted with a stirring mechanism, which is operated under subfluidization conditions, the polymer formed being discharged from the reactor separately from other reactor effluent, it being possible to vary the composition of the overall feed to be supplied to a zone between two zones at least and the reactor effluent separated from polymer leaving the reactor as a single stream, at least part of this stream being returned to the reactor as feed after one or more separating steps.
Abstract:
A process for the double bond isomerization of an olefin, which process comprises contacting a feed comprising the olefin with an isomerization catalyst, wherein prior to contacting the feed with the isomerization catalyst one or more components of the feed are pretreated by contacting with a pretreating material which comprises a zeolite which has a pore size of at least 0.35 nm; a plant which is suitable for carrying out the isomerization process; and a process for treating an olefin mixture which comprises a linear null-olefin and a vinylidene olefin which is isomeric to the linear null-olefin and which is of the general formula CH2nullC(R1)R2, wherein R1 represents an ethyl group and R2 represents a linear 1-alkyl group, which process comprises isomerizing the vinylidene olefin to form a double bond isomer of the vinylidene olefin by contacting a feed comprising the olefin mixture with an isomerization catalyst, and separating the linear null-olefin from the double bond isomer of the vinylidene olefin, wherein prior to contacting the feed with the isomerization catalyst one or more components of the feed are pretreated by contacting with a pretreating material which comprises a zeolite which has a pore size of at least 0.35 nm.