Abstract:
This invention relates to a gel-free process for making functionalized polymers. When multi-alkali metal initiators are used to make these polymers anionically, the process comprises anionically polymerizing at least one monomer with a multi-alkali metal initiator in a hydrocarbon solvent, capping the polymer by adding to the polymer a capping agent that reacts with the ends of the polymer chains such that strongly associating chain ends are formed wherein a strongly associating gel is formed, and, finally, adding a trialkyl aluminum compound to the gel. The important characteristic of the capping agent herein is that it will cap the living polymer and will add a functional group to the polymer chain end which will be strongly associating in the hydrocarbon solvent. In a second embodiment, the present invention relates to a process for making such polymers which comprises anionically polymerizing them as described and adding to the polymer a trialkyl aluminum compound before the alkali metal reacts with the capping agent-functionalized chain ends. Finally, the polymer is capped by adding the above-described capping agent. In the first embodiment, a gel is formed and then removed. In the second embodiment, the gel never is formed because of the presence of the trialkyl aluminum compound.
Abstract:
The present invention is an improvement upon the known method of anionically polymerizing monomers by contacting the monomers with an anionic polymerization initiator which is an organo-substituted alkali metal compound. The improvement comprises decreasing the viscosity of the polymer cement by adding at least 0.01 equivalent of a metal alkyl compound per equivalent of alkali metal initiator if the metal alkyl is added before or at the beginning of polymerization. If the metal alkyl is added during the polymerization or after but before the living polymer is terminated, then at least 0.01 equivalent of the metal alkyl compound per equivalent of living polymer chain ends is should be used. The alkyl groups of the metal alkyl are chosen such that they do not exchange with the organo substituents of the alkali metal, which can be the living polymer chain ends or the organo substituents of the initiator. To avoid this undesired exchange reaction, the alkyl groups of the metal alkyl compound are selected to be more basic and/or less bulky or both than the organo substituents of the alkali metal compound.
Abstract:
The invention relates to crosslinked polymerizates which are capable of absorbing, which are based on partially neutralized, monoethylenically unsaturated monomers that carry acidic groups, which exhibit improved properties, in particular, with regard to their ability to transport liquids when in a swollen state, and which have been subsequently crosslinked on the surface thereof with a combination consisting of an organic crosslinker compound, with the exception of polyols, and of a cation provided in the form of a salt in an aqueous solution.
Abstract:
The present invention relates to block copolymers which are predominantly based on vinylcyclohexane and to a process for producing them. The block copolymers can be processed to form mouldings by extrusion or injection moulding. The mouldings which result therefrom are distinguished by their high resistance to thermal deformation, good mechanical properties, high transparency in the visible and near UV range, and by their particularly low birefringence and water absorption.
Abstract:
Rubbery polymers made by anionic polymerization can be coupled with tin halides or silicon halides to improve the characteristics of the rubber for use in some applications, such as tire treads. In cases where the rubbery polymer was synthesized utilizing a polar modifier it is difficult to attain a high level of coupling. This invention is based upon the unexpected finding that coupling efficiency can be significantly improved by conducting the coupling reaction in the presence of a lithium salt of a saturated aliphatic alcohol, such as lithium t-amylate. This invention discloses a process for coupling a living rubbery polymer that comprises reacting the living rubbery polymer with coupling agent selected from the group consisting of tin halides and silicon halides in the presence of a lithium salt of a saturated aliphatic alcohol. The lithium salt of the saturated aliphatic alcohol can be added immediately prior to the coupling reaction or it can be present throughout the polymerization and coupling process. Lithium t-amylate reacts with water to form t-amyl alcohol during steam stripping. Since t-amyl alcohol forms an azeotrope with hexane, it co-distills with hexane and can contaminate recycle feed streams. This problem of recycle stream contamination can be solved by using metal salts of cyclic alcohols that do not co-distill with hexane or form compounds during steam stripping which co-distill with hexane. Thus, the use of metal salts of cyclic alcohols is preferred for this reason and because they are considered to be environmentally safe.
Abstract:
The present invention is directed to golf ball cover compositions containing metal cation neutralized carboxylic acid based copolymers and/or alkali metal cation neutralized ethylene copolymers such as ethylene alkyl acrylates. Golf balls produced with the cover molded thereon exhibit desired properties of distance and high coefficient of restitution without substantially sacrificing and/or improving characteristics like playability and durability when compared to existing ionomeric resin covers.
Abstract:
Disclosed is a metal containing polymer composition comprising; a metal overbased imide or ester functionalized polymer prepared by reacting (A) a polymer comprising (A1) an acidic functionalized polymer or ester functionalized polymer; (A2) an acidic mixed ester-acid of a carboxy containing interpolymer; or (A3) an ester functionalized polymer comprising a lactone and (B) a metal overbased composition that contains a reactive basic functionality comprising (B1) a metal overbased amine wherein the reactive basic functionality is a primary or secondary amino group; (B2) a metal overbased hydroxy substituted carboxylic acid wherein the reactive basic functionality is a hydroxy group; or (B3) a metal overbased dispersant wherein the reactive basic functionality is a primary or secondary amino group.
Abstract:
Non-chloride containing regenerant compositions of potassium acetate or potassium formate, at least one surfactant and at least one chelating agent as well as methods for efficient regeneration of water softeners utilizing the regenerant compositions are disclosed. A preferred regenerant composition is a solution of potassium acetate or potassium formate with citric acid and octyl phenol ethoxylate.
Abstract:
It has been unexpectedly found that greatly improved properties for tire rubbers, such as lower hysteresis, can be attained by coupling the rubber with both a tin halide, such as tin tetrachloride, and a silicon halide, such as silicon tetrachloride. Even better characteristics for use in tire tread compounds can be realized by asymmetrically coupling the rubbery polymer. This invention more specifically discloses a coupled rubbery polymer which is particularly valuable for use in manufacturing tire tread compounds, said coupled rubbery polymer being comprised of (1) tin atoms having at least three polydiene arms covalently bonded thereto and (2) silicon atoms having at least three polydiene arms covalently bonded thereto.
Abstract:
Disclosed is a process for esterifying and/or transesterifying a polymer having a polyethylenic backbone and pendant acid and/or ester moieties comprising contacting a melt of the polymer with a transesterifying compound so that the polymer undergoes esterification and/or transesterification but not alcoholysis. The esterified or transesterified polymer also has pendant ester moieties which differ in kind and/or number from the unreacted polymer. In one embodiment, the process also comprises adding an amount of a transition metal salt that is effective to promote oxygen scavenging. Also in a further embodiment, the process comprises irradiating the transesterified polymer with actinic radiation to reduce the induction period before oxygen scavenging commences. Also disclosed are compositions comprising a component which comprises an ethylenic or polyethylenic backbone and a pendant or terminal moiety comprising a benzylic, allylic, or ether-containing radical. The invention also embodies new polyethylenic oxygen scavenging compositions comprising a transition-metal salt and the above component. Methods of making the compositions, and methods and compositions using the ethylenic or polyethylenic compositions, are disclosed.