摘要:
Zinc alloys containing from 5 to 35% by weight of aluminum and optionally further alloy components are used as constructional zinc for strips and plates.
摘要:
The method of manufacturing a hydrogen-absorbing alloy electrode according to this invention comprises the steps of: dissolving a particle surface of said hydrogen-absorbing alloy by a surface-treatment solution; and washing the hydrogen-absorbing alloy with the particle surface dissolved using an alkaline solution at a temperature of 30null C.null40null C. The metal ions dissolved by the surface-treatment solution can be completely washed away by the alkaline solution so that they will not be precipitated onto the surface of the hydrogen-absorbing alloy again as the hydroxide. In this case, the washing using the alkaline solution of which the temperature exceeds 40null C. dissolves an alloy component as well as the hydroxide. Therefore, the temperature of the alkaline solution used must be controlled at 40null C. or lower. On the other hand, if the temperature of the alkaline solution is lower than 30null C., the washing effect cannot be sufficiently shown, therefore temperature must be controlled at 30null C. or higher.
摘要:
A distortion control method that can suppress distortion of a member during quenching and a cooling power measuring device that can precisely measure cooling power are provided. In the distortion control method, when the member is subjected to quenching using liquid cooling medium, the cooling power of the cooling medium being used is maintained within a prescribed range, so that variation in distortion suffered by the member is restricted.
摘要:
A molten zinc alloy, which contains 4-22 mass % Al, 1-7 mass % Mg and optionally one ore more of Ti, B and Si at very small ratios, is held at a temperature Th higher than (a solidification-beginning temperature Ts.b.null85null C.) for homogenization, and then cooled down to a temperature Tc equal to (Ts.b.null20-65null C.). After the molten alloy is poured in a mold, it is naturally cooled and solidified to an ingot, while its upper part is being heated. Once an upper surface of the zinc alloy in the mold begins to solidify, it is optionally cooled with water. The produced ingot has a structure without cracks or cavities, so that it is safely fed to a molten pool for replenishment.
摘要:
A ConullNi base heat-resistant alloy is composed of, all by weight: not more than 0.05 mass % of C; not more than 0.5 mass % of Si; not more than 1.0 mass % of Mn; 25 to 45 mass % of Ni; 13 to less than 18 mass % of Cr; 7 to 20 mass % of MonullnullW of one kind or more of Mo and W; 0.1 to 3.0 mass % of Ti; 0.1 to 5.0 mass % of Nb; 0.1 to 5.0 mass % of Fe, with the balance of substantially Co and inevitable impurities.
摘要:
In the present invention, an alloy temperature of a hydrogen storage alloy in the final stage of a hydrogen desorption process (T2) is made to a temperature higher than an alloy temperature of the hydrogen storage alloy in the initial stage of the hydrogen desorption process (T1) (T2>T1) and the alloy temperature in the final stage (T2) is controlled to a temperature where a hydrogen pressure at a boundary point between a plateau region of a PCT curve and an inclined region adjacent thereto is 0.08 MPa or more.
摘要:
A method for quenching metallic workpieces in a furnace space, includes subjecting a metallic workpiece to a heat treatment process in an evacuated furnace space. Before a quenching gas or mixture is passed into the furnace space, hydrogen is supplied to the still evacuated furnace space. The amount of hydrogen supplied to the furnace space is limited so that, depending on (1) the quenching pressure, (2) the gas temperature at the end of the quenching process, and (3) the composition of the quenching gas or mixture, a hydrogen concentration below the explosive limit is reached in the quenching gas or mixture. The quenching gas or mixture contains an inert gas or a mixture of inert gases, such as nitrogen, argon and/or helium.
摘要:
Methods for quenching a heated metallic object comprising discharging a plurality of discrete gas streams from a plurality of nozzle outlets such that the gas streams impinge substantially uniformly over the outer surface of the object, wherein the distance (a) between each nozzle outlet and the outer surface of the object against which the associated gas stream impinges is less than or equal to half the diameter (d) of the nozzle outlet.