Abstract:
A remediation pig for cleaning a pipeline of wax or paraffin mechanically, with heating, and/or with jetting, comprising a body having an axis, an impeller mounted in the body to receive power from the flowing fluid within the pipeline, wheels mounted on the body for contacting the internal bore of the pipeline, the wheels being powered by the power received from the impeller and being mounted in a skewed position relative to a plane perpendicular to the axis such that as the wheels roll on the internal bore the remediation pig will move along the pipeline.
Abstract:
A pipeline sphere is shown which houses an electronics package. The sphere is formed as a hollow elastomeric body having a predetermined wall thickness and an initially void interior. A carrier tube is positioned within the initially void interior of the sphere and is supported by oppositely arranged carrier plates which are themselves embedded within oppositely arranged end openings of the sphere. A removable inflation valve is contained in one of the valve plates at a first end of the carrier tube. The carrier tube has a plurality of apertures formed through its wall to enable inflating or deflating the sphere. One electronics package that can be used is an electrical tracking device.
Abstract:
A tractor assembly is provided for downhole advancement in a well. The assembly comprises an uphole tractor and a downhole tractor. Each tractor in turn comprises uphole and downhole housings to accommodate uphole and downhole anchors with the anchors configured for interchangeably engaging a wall of the well. Additionally, a hydraulically driven piston is disposed through each of the housings of each tractor for actuation of the engaging.
Abstract:
The present application relates to a tool for detecting perforations in hydrocarbon pipelines based on the sensing system thereof. The function of said tool is to pass longitudinally through a pipeline of specific diameter, monitoring the thickness thereof and detecting any hole over the path followed and, in accordance with the data obtained, establishing the distance at which the holes are located, calculated from the starting point, the time at the instant of detection and also the circumferential position and size thereof, all the aforesaid as part of an online process implemented as the tool progresses through the target pipeline. At the end of the run, the information may be downloaded to a computer where it is available for use and for the corresponding decisions concerning integrity.
Abstract:
An in-pipe robot is provided with a rotary actuator 30 that rotates the drilling blade 21 in the circumferential direction of an existing pipe. A wheel body 50 provided with a traveling wheel 52 on both sides and a wheel body 70 provided with a traveling wheel 72 on both sides are supported between side frames 43 of a chassis via pins 54 and 74. The other ends of both the wheel bodies are rotatably coupled around an axle 63 of an intermediate wheel 65 as a pivot. When both the wheel bodies rotate, the intermediate wheels and the rotary actuator move above a horizontal line passing through the pin center. Each pin is disposed at the midpoint of a line connecting the center of the traveling wheel and the center of the intermediate wheel so that the rotation axis v1 of the rotary actuator coincides with the pipe center axis of the existing pipe.
Abstract:
A pipeline sphere is shown which houses an electronics package. The sphere is formed as a hollow elastomeric body having a predetermined wall thickness and an initially void interior. A carrier tube is positioned within the initially void interior of the sphere and is supported by oppositely arranged carrier plates which are themselves embedded within oppositely arranged end openings of the sphere. A removable inflation valve is contained in one of the valve plates at a first end of the carrier tube. The carrier tube has a plurality of apertures formed through its wall to enable inflating or deflating the sphere. One electronics package that can be used is an electrical tracking device.
Abstract:
Systems and a method for braking an object are provided. An example method, includes determining the expected speed of the object, monitoring the expected speed of the object, and determining if the actual speed of the object is within a preset tolerance of the expected speed. If the speed is not within the preset tolerance of the expected speed, a magnetorheological brake is activated to slow the object.
Abstract:
Embodiments of the present invention include a system for locating and restoring service lines during pipeline restoration. According to some embodiments of the present invention, the system includes a movable chart, a plug with a marking magnet, and an attachment part. In some embodiments of the present invention, the movable cart is deployed along the inside of a pipeline. In some embodiments, the attachment part is movably coupled to the movable cart. The attachment part is configured to install a plug into the service line at a location where the service line intersects the pipeline, according to some embodiments. In other embodiments, the attachment part is configured to mark the location of the plug in the service line and remove the plug from the service line to restore a fluid connection between the service line and the pipeline.