摘要:
Interrupted-Fan-Beam imaging is a method of producing back-scatter x-ray images from conventional line scan systems, such as those used for luggage and cargo inspection. Since back-scatter and transmission images are formed from different physical principles, the use of both images provides a more thorough security inspection. A mathematical relation relates the signal-to-noise ratio to the spatial resolution in an Interrupted-Fan-Beam image. When used in conjunction with typical operating values of x-ray systems, such as flux level and number of pixels, this relation provides the performance level of the Interrupted-Fan-Beam technique.
摘要:
A system and method of density detection in a target object involve irradiating the target object, detecting a first and second discrete number of photons penetrating the target object through respective first and second prescribed volumes and entering respective first and second radiation detectors. First and second numbers of photons detected by the first and second radiation detectors are counted, and a display output signal is generated in response to the first and second numbers. A graphical representation of the densities within the first and second volumes of the target object is displayed.
摘要:
A computer readable medium encoded with a plurality of instructions for execution on at least one processor, the plurality of instructions performing a method of remote screening of items of baggage. The method includes steps of storing information about an item under inspection, linking a unique item identifier with the information to uniquely associate the information with the item under inspection and retrieving the information about the item under inspection in response to a request. The method also includes analyzing the information to determine a screening result for the item under inspection, and storing the screening result with the information about the item.
摘要:
An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.