Abstract:
The present invention realizes a cathode ray tube which holds the stable electron emission characteristics when the cathode ray tube is operated in a high current density state for a long time. An electron emissive material layer which constitutes a cathode is formed by dispersing a scandium compound having an average particle size of equal to or less than 1.2 nullm to an oxide layer formed of alkaline earth metal (barium, strontium, calcium) oxide, wherein an atomic weight ratio of scandium with respect to strontium is set to a value within a range of 0.003 to 0.3. A base metal includes a reducing metal containing nickel as a main component and a plate thickness of a surface of a top portion of the base metal which comes into contact with the electron emissive layer is set to a value equal to or more than 0.17 mm.
Abstract:
A method and apparatus for stabilizing glow plasma discharges by suppressing the transition from glow-to-arc includes a perforated dielectric plate having an upper surface and a lower surface and a plurality of holes extending therethrough. The perforated dielectric plate is positioned over the cathode. Each of the holes acts as a separate active current limiting micro-channel that prevents the overall current density from increasing above the threshold for the glow-to-arc transition. This allows for a stable glow discharge to be maintained for a wide range of operating pressures (up to atmospheric pressures) and in a wide range of electric fields include DC and RF fields of varying strength.
Abstract:
A first electrode part in a rod shape is placed on an upper side, and a second electrode part in a rod shape having a higher melting point than that of the first electrode part is placed on a lower side, so that ends of the first and second electrode parts are brought into contact. Contact ends or vicinities thereof are irradiated with a laser beam, so that the electrode parts are welded. Here, a region irradiated with the laser beam is in a long narrow shape having a minor axis directed in a vertical direction and a major axis directed in a horizontal direction. This makes it possible to manufacture an electrode with a consistent high quality with a high yield.
Abstract:
A display device comprising a first and a second set of electrodes (2, 5), and a plurality of light-emitting elements (3), arranged between said sets of electrodes. The display further comprises an electromechanically operable foil (6), located between said light-emitting elements (3) and said second set of electrodes, with a conducting layer facing the light-emitting elements (3). The foil (6) is arranged to place the conducting layer (7) in contact with selected ones of said light-emitting elements (3), thereby closing a circuit from said first set of electrodes (2), via said elements (3), to said conducting layer (7). Thus, the foil acts as a plurality of nullswitchesnull, connecting selected light-emitting elements to the conducting layer. This function can be used for controlling the light-emitting elements with a higher degree of accuracy.
Abstract:
A plasma display panel and a method for fabricating the same are disclosed, in which the fabricating process time of the plasma display panel can be reduced, characteristic and performance of the panel can be prevented from being reduced, and the panel can be prevented from being damaged. Also, a panel structure is not changed by external pressure variation. The method for fabricating a plasma display panel includes the steps of: depositing a first adhesive along a predetermined area outside an active picture of a first substrate; depositing a second adhesive outside a portion where the first adhesive is deposited, to have a predetermined interval from the first adhesive; depositing a sealant to align with upper portions of the first and second adhesives; depositing an adhesive outside a portion where the second adhesive is deposited, to have a predetermined interval from the second adhesive; aligning a second substrate on the first substrate; and attaching the first and second substrates to each other under a predetermined pressure.
Abstract:
A magnetic material-inverting display panel wherein a liquid dispersion, which has a yield value and contains a magnetic display material in fine particle form having magnetic poles of opposite signs tinged with different colors by placing an opaque thin metal layer on at least one surface and making the color of another surface different from that of the thin metal layer of one surface, a dispersion medium and a thickener as main components, is supported by a support. The total area of S-pole-surfaces or N-pole-surfaces of the magnetic display material in fine particle form being from 60 to 1500% of the display surface area of the display panel. The magnetic material-inverting display panel of this invention has whereby a good contrast and forms a display of a metallic tone or a pastel color tone.
Abstract:
A display unit and method of manufacturing same is provided. The display unit includes a drive panel and a sealing panel that face each other with a middle layer in between. The display panel includes a number of light-emitting devices on a drive substrate with a drive device layer and a coating layer that is provided over the drive device layer in between. The middle layer is disposed between the drive panel and the sealing panel so as to be laid over the light-emitting devices.
Abstract:
An electroluminescent panel is provided. The electroluminescent panel comprises a front electrode layer; a luminescent layer, formed on the front electrode layer; a reflective layer, formed on the luminescent layer; a back electrode layer having at least a pattern or letters for being displayed by the electroluminiscent panel; an insulating layer, adhered onto the back electrode layer, wherein the insulating layer comprises a plurality of contact holes, and wherein the contact holes are disposed according to the pattern or letters of the back electrode layer.
Abstract:
It is sought to provide a negative ion generator, which can suppress positive ion generation, permits ready control of the quantity of generated negative ions and permits its size and thickness reduction. The negative ion generator 1 is of electron emission type in which, for negative ion generation, electrons are emitted into air by impressing a negative high voltage on a stylus electric discharge electrode 6. A piezoelectric transformer 5 is used for amplifying a non-rectified drive voltage from a transformer drive circuit 9. As a result of rectification of the AC high voltage from the piezoelectric transformer 5, a negative high voltage is obtained, which is impressed on the stylus electric discharge electrode 6 for electron emission wherefrom, thereby generating negative ions in air.
Abstract:
A gas discharge lamp fitted with a gas discharge vessel filled with a gas filling is suitable for a gas discharge which emits VUV radiation, with a luminophore coating containing a down conversion luminophore and with means for igniting and maintaining a gas discharge in which the down conversion luminophore has in a host lattice a pair of activators of the a first lanthanoid ion and a second lanthanoid ion and a sensitizer selected from the group of the cerium (III) ion, praseodymium (III) ion, neodymium (III) ion, samarium (III) ion, europium (III) ion, gadolinium (III) ion, terbium (III) ion, dysprosium (III) ion, holmium (III) ion, erbium (III) ion, thulium (III) ion, ytterbium (III) ion and lutetium (III) ion, is environmentally friendly and has a high lamp efficiency nulllamp. The invention also concerns a down conversion luminophore which in a host lattice has a pair of activators of a first lanthanoid ion and a second lanthanoid ion and a sensitizer selected from the group of the cerium (III) ion, praseodymium (III) ion, neodymium (III) ion, samarium (III) ion, europium (III) ion, gadolinium (III) ion, terbium (III) ion, dysprosium (III) ion, holmium (III) ion, erbium (III) ion, thulium (III) ion, ytterbium (III) ion and lutetium (III) ion.