Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having power ranges of about 150 W to about 1000 W. Such lamps have outer bulb (10) enclosing a cylindrical ceramic discharge vessel (20) enclosing a discharge space, the cylindrical ceramic discharge vessel including within the discharge space an ionizable material containing a metal halide; a first and second discharge electrode feedthrough (30, 40); and a first and second current conductor (12, 13) connected to the first and second discharge electrode feedthrough (30, 40), respectively. A lamp is provided having a frame wire structure which comprises at least one frame wire (17, 17A,17B), connected to said current conductors (12, 13), through a conductor (19), the frame wire structure extending between the ceramic discharge vessel and the glass bulb, and being effective to reduce arc bending, regardless of the orientation of the lamp during operation in a fixture and regardless of the relative position of the frame wire to the arc tube.
Abstract:
A light source device includes a substrate, a plurality of discharge tubes arranged on one principal surface of the substrate, a driving circuit mounted on the other principal surface of the substrate that is opposite to the foregoing principal surface, a discharge medium sealed in the discharge tubes, and first and second electrodes for exciting the discharge medium. The foregoing discharge medium does not contain mercury. Thus, the light source device can be formed smaller in size and thinner in thickness, and a liquid crystal display device employing the same can be provided.
Abstract:
The present invention relates to a discharge lamp containing a radioactive gas for starting said lamp. The radioactive gas is enclosed in a capsule, a wall of which is transparent to the radioactive radiation. Thus, the capsule promotes the starting of the discharge lamp, whilst preventing consumption of the radioactive gas which it contains, since the latter is isolated from the filling gas by the sealed walls of the capsule. The service life of the discharge lamp is thus increased.
Abstract:
A plasma display panel and a method for fabricating the same are disclosed, in which the fabricating process time of the plasma display panel can be reduced, characteristic and performance of the panel can be prevented from being reduced, and the panel can be prevented from being damaged. Also, a panel structure is not changed by external pressure variation. The method for fabricating a plasma display panel includes the steps of: depositing a first adhesive along a predetermined area outside an active picture of a first substrate; depositing a second adhesive outside a portion where the first adhesive is deposited, to have a predetermined interval from the first adhesive; depositing a sealant to align with upper portions of the first and second adhesives; depositing an adhesive outside a portion where the second adhesive is deposited, to have a predetermined interval from the second adhesive; aligning a second substrate on the first substrate; and attaching the first and second substrates to each other under a predetermined pressure.
Abstract:
An EUV radiation source comprises a first electrode having a first through hole, a second electrode having a second through hole, a movable insulator, having a plurality of third through holes, provided between the first and second electrodes, wherein actuating gas is introduced in the first, second through holes and one of the plurality of third through holes, and voltage is impressed between the first and second electrodes when the first, second and plural through holes are located on a common axis.
Abstract:
Described is a plasma switched organic photoluminescent display including lower and upper plates. The lower plate includes a transparent rear substrate, a plurality of address electrodes arranged in a first direction on the transparent rear substrate like stripes in parallel each other, a white back dielectric layer on the transparent rear substrate including the address electrodes, a plurality of barrier ribs arranged in parallel each other on the white back dielectric layer between the address electrodes in the first direction, respectively, a plurality of organic photoluminescent layers on the exposed white back dielectric layer between the barrier ribs, respectively, and a plurality of photoluminescent-layer-protecting layers on the organic photoluminescent layers, respectively. The upper plate includes a transparent front substrate, a plurality of transparent sustain electrodes arranged in parallel each other like stripes on the transparent front substrate in a second direction, a plurality of auxiliary sustain electrodes on the sustain electrodes, respectively, so as to reduce resistances of the sustain electrodes, a transparent dielectric layer on the front substrate so as to cover the sustain and auxiliary sustain electrodes, and a protecting layer on the transparent dielectric layer.
Abstract:
A high intensity discharge lamp (10) has an outer envelope (12) having a cup-shaped top (14), a hollow center section (16) and a bottom (18) all aligned along a longitudinal axis (20), the bottom (18) including a flare (22) having a pinch seal (24) with in-leads (26, 28) sealed therein. A mount structure (30) is positioned within the envelope, the mount structure including a frame (32) comprising a spaced-apart pair of side frames (34, 36) extending substantially the length of the envelope (12) and parallel to the longitudinal axis. The side frames (34,36) have middle portions (35,37) carrying an arc tube (38) and a surrounding shield (40), and the side frames further have an upper portion that frictionally engages the inside surface of the cup-shaped top (14), the upper portion comprising two ends (42, 44) extending in a direction normal to the longitudinal axis and having a space (50) therebetween.
Abstract:
To extend the life of electric discharge and enhance the characteristic of electric discharge in the life test in a gas filled switching electric discharge tube. A gas filled switching electric discharge tube comprises: a cylindrical body (1) made of insulating material; two electrodes (2, 3) for airtightly closing both ends of the cylindrical body; an electric discharge gap, an airtightly closed space formed in the cylindrical body including the electric discharge gap being filled with gas; metallized faces formed on both end faces of the electrodes of the cylindrical body; first trigger wires (10a, 10b) formed on an inner wall face of the cylindrical body, connected with the metallized faces; and second trigger wires (10c) formed on the inner wall face of the cylindrical body, not connected with the metallized faces, wherein the first electrode face and second electrode face are plated with copper or silver.
Abstract:
A radiation source constructed in accordance with the invention is particularly suited for use in processing semiconductor wafers. An exemplary embodiment of the invention includes a base electrode having a two dimensional surface bounding one side of a radiation emitting region. An ionizable, excimer gas is present in the radiation emitting region. The excimer gas, when energized, emits radiation in the UV and/or VUV wavelengths. A two dimensional dielectric radiation transmissive layer bounds an opposite side of the radiation emitting region and transmits radiation to a wafer treatment region. Disposed between the dielectric radiation transmissive layer and a protective radiation transmissive window is a two dimensional matrix or screen electrode defining a plane generally parallel to the two dimensional surface of the base electrode region. A power supply coupled to the base and matrix electrodes to energize the electrodes and the eximer gas causing emission of UV and/or VUV radiation. The range of wavelengths transmitted to the wafer treatment region can be nulltunednull by using a filter disposed adjacent to the protective window which functions to block transmission of selected wavelengths of emitted radiation.