Abstract:
An imaging tube (51) is provided including a cathode (58) and an anode (60). The cathode (58) includes an emission surface (99), which emits a plurality of electrons along an emission axis (56). The anode (60) includes a body (76) having a track (58) on a peripheral section (78) of the body (76). The plurality of electrons are directed to impinge on the track (58) at an impingement angle &agr; approximately equal to or between 15° and 25° relative to the emission axis (56) and are converted into x-rays. A method of generating x-rays within the imaging tube is also provided.
Abstract:
An X-ray generator includes a cathode having an emitter made of carbon nanotubes which emits electrons by field emission and thus becomes a cold cathode electron emission source. In the invention using the carbon nanotubes, any one of the following three forms is adopted to control the tube current apart from the electron-focusing control. The first form is that a takeoff electrode is disposed near the cathode and the Wehnelt potential and the takeoff electrode potential are controlled independently. The second form is that an electron emission source is disposed behind the cathode and the electron emission source emits electrons which collide against the back of the cathode so that the cathode temperature is controlled in a range of the room temperature to about 100 degrees Celsius to regulate an amount of electron emission from the cathode. The third form is that the cathode has a heater so that the cathode temperature is controlled in a range of the room temperature to about 100 degrees Celsius to regulate an amount of electron emission from the cathode.
Abstract:
An X-ray emission device having a microwave source and a resonant chamber. The resonant chamber contains a hermedically sealed volume of gas, a magnetic structure defining a geometrical electron-confinement zone in which electrons move at high speed. At least one target is placed in an electron path in order to emit X-rays. Each target is offset with respect to a mid-region of the geometrical conbinement zone.
Abstract:
For eliminating a high-tension cable in order to improve the handling, the open type X-ray generating apparatus (1) in accordance with the present invention employs a mold power unit in which a high-voltage generating part, a grid connecting line, and a filament connecting line which attain a high voltage are molded with a resin, whereas the mold power unit is secured to the proximal end side of a tubular portion (2), whereby an apparatus of a type integrated with a power supply is realized. Since the high-voltage generating part, grid connecting line, and filament connecting line are confined within the resin mold as such, the degree of freedom in structure of the high-voltage generating part and the degree of freedom in bending the lines improve remarkably.
Abstract:
A solid state x-ray source (14) for a computed tomograph (CT) imaging system (10) is presented. X-ray source (14) has a cathode (58) which is preferably formed of a plurality of addressable elements. The cathode is positioned within a vacuum chamber (74) so that electrodes emitted thereby impinge upon anode (68) spaced apart from cathode (58). An electron beam (82) is formed and moved along the length of cathode (58). The anode (68) is disposed within a cooling block portion (58) and operatively adjacent to an x-ray transmissive window (66). The anode (68) and x-ray transmissive window (66) are disposed within an elongated channel (64) of the cooling block portion (56).
Abstract:
An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.
Abstract:
A small, low cost, low power, and portable x-ray source that produces an x-ray flux that is sufficient to produce high quality x-ray images on suitable x-ray sensitive films. The source includes a vacuumated chamber that is filled with a heavy atomic weight gas at low pressure and an x-ray emitter. The chamber is in a magnetic field and an oscillating electric field and generates an Electron Cyclotron Resonance (ECR) plasma having a ring of energetic electrons inside the chamber. The electrons bombard the x-ray emitter which in turn produces x-ray radiation in a given direction. A pair of magnetic members generate an axisymmetric magnetic mirror trap inside the chamber. The chamber may be nested within a microwave resonant cavity and between the magnets, or the chamber and microwave cavity may be a single composite structure. The source is useful to make x-ray photographs virtually anywhere and may be battery powered.
Abstract:
A method and a system for x-ray treatment of, for example, cancer or restenosis prevention inside a living body is disclosed. A miniature x-ray tube (1) is provided with at least one pair of electrodes (6, 8), the electrodes alternatingly serving as anode and cathode, respectively. A power supply (13) is connected to the electrodes, and a switching unit of the power supply alternates the electrical potential across the electrodes. With the x-ray tube according to the invention the temperature increase at the site of treatment is limited, thereby providing an effective treatment without unduly prolonged treatment duration.
Abstract:
An EUV radiation source (50) that employs a steering device (74) for steering a stream (66) of droplets (68) generated by a droplet generator (52) so that the droplet (68) are directed towards a target location (76) to be vaporized by a laser beam (78). The direction of the stream (66) of droplets (68) is sensed by a sensing device (84). The sensing device (84) sends a signal to an actuator (88) that controls the orientation of the steering device (74) so that the droplets (68) are directed to the target location (76).
Abstract:
It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.