Abstract:
The invention relates to an electron capture detector having an ionisation chamber of large volume and into which a sample flows at a high flow rate, the terms ''''large'''' and ''''high'''' being relative to the hitherto accepted standards for electron capture detectors. Conveniently the ionisation chamber can be in the form of an elongated tube having a length which is an order of magnitude greater than any lateral dimension.
Abstract:
An improved chamber assembly for an ionization smoke detector. The chamber assembly includes a cup shaped electrode having attached therein a radioactive source to provide the ionization in the chamber. The radioactive body which is retained in a rivet head container, or the like, is staked to the interior surface of the cup shaped electrode, and to make sure that the radioactive source or its container does not project out into the chamber area, the mounting point of the electrode is dimpled so that the face of the mounted radioactive rivet is substantially flush with the general contour of the interior surface of the electrode.
Abstract:
An ionization-type gas contamination detector, intended primarily for use as a fire detector, in which a substance which emits predominantly low-energy beta particles is used as an ionizing radiation source in an ionizing chamber. Rapid changes in ionization current, which indicate the presence of a fire or smoke preceding a fire, are detected and an alarm is energized by a rate-of-change circuit in response to such changes. The output of the ionization chamber is amplified, and a level detector energizes the alarm when the amplified chamber output reaches a predetermined level. The output of the amplifier is adjusted relatively slowly to a reference level. In one embodiment, the amplifier output is adjusted to the reference level by the activation of a sample-and-hold feedback loop for a short period of time. In another embodiment, continuous feedback through a circuit with a relatively long time constant provides the desired adjustment. This feature makes the device relatively insensitive to normal atmospheric and environmental changes, while being very sensitive to changes in the level of combustion products in the atmosphere.
Abstract:
A leak detector comprising a housing having an axis on first and second compartments spaced along the axis and hermetically separated by a partition, the first compartment being closed to comprise a pressure envelope which is in communication with an evacuated space to be monitored for leakage, an ionization cell in the first compartment providing an electrical current determined by gas in that compartment, hermetically sealed feed-through for enabling an electrical connection with the gauge, to the partition from the second compartment, an apparatus in the second compartment performing a control function in accordance with the current supplied by the cell.
Abstract:
An ionization detecting fire alarm device that comprises a double chamber structure, a source disposed in at least one of the chambers and a vernier adjusting screw electrode protruding into one chamber. The chamber containing the adjustable electrode is more open to the atmosphere than the other chamber. Porting is provided between chambers and detection occurs by sensing the rate of change of ionization current in the chamber structure. The source or sources, one being in each chamber, is a beta source such as a nickel 63 source. A change in ionization current is detected by a unique circuit of this invention which comprises a programmable unijunction transistor oscillator circuit.
Abstract:
A novel form of ionization detector, particularly one operating in the electron capture mode, is described. The detector includes iron-55 as a source of electrons to cause ionization. The detector may be operated in direct current, pulse or frequency modulated modes.
Abstract:
An Ionization Detector analyses a flowing fluid stream for a specific gas or gases. The recirculation of gases between electrodes is eliminated, and the gas between the anode and cathode is not restrained. The anode is made of a porous, electrically conductive material and the cathode is a beta emitting foil positioned adjacent to, but physically and electrically isolated from, the anode. The detector will function with or without an added cell voltage. The response of the detector to the water of aqueous solutions is so limited in duration that a characteristic response from organic substances can be obtained even when the substance is introduced in an aqueous solution to the chromatographic column.