摘要:
In order to improve usability of hybrid or fully electric aircraft, a fuel cell having improved efficiency and increased volume/weight specific energy density is provided. The fuel cell has a self-supporting membrane structure that is formed as a triply periodic level surface, which separates a first cavity supplied with gaseous fuel from a second cavity supplied with gaseous oxidizer in a gas-sealed manner while connecting the cavities in an ion-conductive manner.
摘要:
A heat treatment apparatus for a fuel cell membrane-electrode assembly is provided. The heat treatment apparatus includes a hot press installed on upper and lower sides of feeding path to move in the vertical direction on a frame and which presses the electrode catalyst layers on upper and lower surfaces of the membrane-electrode assembly sheet. A plurality of gripper modules are installed at set intervals in a base member along a feeding direction of the membrane-electrode assembly sheet, and selectively grip both side edges of the membrane-electrode assembly sheet. A driving unit reciprocally moves the base member in a direction perpendicular to the feeding direction of the membrane-electrode assembly sheet and in the feeding direction of the membrane-electrode assembly sheet.
摘要:
Disclosed herein is a fuel cell stack with improved manufacturing performance. The fuel cell stack includes: a separator that comprises a diffusion part, as being provided with a diffusion channel, configured to distribute reaction gas and cooling water and a reaction part, as being continuously formed from the diffusion part and provided with a reaction channel that has a height greater than that of the diffusion channel, configured to move reaction gas distributed from the diffusion part and generate electrons by a chemical reaction; and a gas diffusion layer configured to contact the separator at the diffusion part and the reaction part.
摘要:
An object is to equalize the level of cooling along a top-bottom direction of a fuel cell stack. A fuel cell stack has an anode-side separator placed between a plurality of membrane electrode assemblies. The anode-side separator comprises a separator center area that is arranged to face a power generation area of the membrane electrode assembly; an outer peripheral portion that is extended from the separator center area to outer periphery and has a plurality of openings for cooling medium supply manifolds; and a rib that is firmed from a beam portion provided to separate the adjacent openings for cooling medium supply manifolds from each other, over an area between the openings for cooling medium supply manifolds and the separator center area.
摘要:
A heat treatment apparatus for a fuel cell membrane-electrode assembly is provided. The heat treatment apparatus includes a hot press installed on upper and lower sides of feeding path to move in the vertical direction on a frame and which presses the electrode catalyst layers on upper and lower surfaces of the membrane-electrode assembly sheet. A plurality of gripper modules are installed at set intervals in a base member along a feeding direction of the membrane-electrode assembly sheet, and selectively grip both side edges of the membrane-electrode assembly sheet. A driving unit reciprocally moves the base member in a direction perpendicular to the feeding direction of the membrane-electrode assembly sheet and in the feeding direction of the membrane-electrode assembly sheet.
摘要:
Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
摘要:
A bipolar plate assembly includes a first frame member, a second frame member, and a membrane electrode assembly. The first frame member has a first side and a second side. The first side has a first side protuberance. The second frame member includes a first side and a second side. The second side has a second side recess. The membrane electrode assembly has an anode plate and a cathode plate. A portion of the membrane electrode assembly is disposed between the first frame member and the second frame member. The portion of the membrane electrode assembly has a juxtaposition of the anode plate and the cathode plate. The first side protuberance of the first frame member deforms the portion of the membrane electrode assembly into the second side recess of the second frame member.
摘要:
To provide a liquid composition with which a catalyst layer and a polymer electrolyte membrane will hardly be broken at the time of their formation and a method for producing the liquid composition; and a method for producing a membrane/electrode assembly by which a catalyst layer and a polymer electrolyte membrane will hardly be broken at the time of their formation. A liquid composition comprising a polymer having ion exchange groups, water and an organic solvent, wherein the average secondary particle size of the polymer having ion exchange groups is from 100 to 3,000 nm, and the primary particle size parameter represented by the product of the average primary particle size (nm) and the ion exchange capacity (meq/g dry resin) of the polymer having ion exchange groups, is from 12 to 20.
摘要:
The invention relates to a single corrugated fuel cell and a cell stack. The single cell comprises an anode plate, a cathode plate, and a membrane electrode assembly; the anode plate is of a corrugated structure and a plurality of anode channels and anode ribs are arranged on the anode plate in parallel; the cathode plate is of a corrugated structure engaged with the anode plate and a plurality of cathode channels and cathode ribs are arranged on the cathode plate in parallel; the membrane electrode assembly is arranged between the anode plate and the cathode plate. The single cell presents a corrugated structure in a width direction of the channel. A plurality of single cells are stacked in sequence to form a fuel cell stack. Compared with the prior art, the invention significantly increases the reaction area per unit volume of the fuel cell through the corrugated structural design, thereby improving the power density of the fuel cell. In addition, the present invention has little change to the existing processing and manufacturing technology, and thus has high production feasibility.
摘要:
A bipolar plate assembly includes a first frame member, a second frame member, and a membrane electrode assembly. The first frame member has a first side and a second side. The first side has a first side protuberance. The second frame member includes a first side and a second side. The second side has a second side recess. The membrane electrode assembly has an anode plate and a cathode plate. A portion of the membrane electrode assembly is disposed between the first frame member and the second frame member. The portion of the membrane electrode assembly has a juxtaposition of the anode plate and the cathode plate. The first side protuberance of the first frame member deforms the portion of the membrane electrode assembly into the second side recess of the second frame member.