Abstract:
An antenna has a reflector and an active element. The reflector includes a multi-segment metal structure having a length within a first value range. The multi-segment metal structure includes a first metal structure connected to a second metal structure. A PIN diode is disposed on the first metal structure. The first metal structure is parallel to a polarization direction of the active element. The second metal structure is perpendicular to the first metal structure.
Abstract:
A digital phase shifter includes a plurality of digital phase shift circuit groups in which a plurality of digital phase shift circuits are connected in cascade, one or more relay digital phase shift circuits (digital phase shift circuits) provided between two digital phase shift circuit groups, and two or more bend-type connection units configured to connect one of the two digital phase shift circuit group and the relay digital phase shift circuit and connect the other of the two digital phase shift circuit groups and the relay digital phase shift circuit. At least one of the digital phase shift circuits constituting at least one digital phase shift circuit group and the relay digital phase shift circuit is a mitigation circuit that mitigates the distribution of phase shift amounts.
Abstract:
An antenna has a reflector and an active element. The reflector includes a multi-segment metal structure having a length within a first value range. The multi-segment metal structure includes a first metal structure connected to a second metal structure. A PIN diode is disposed on the first metal structure. The first metal structure is parallel to a polarization direction of the active element. The second metal structure is perpendicular to the first metal structure.
Abstract:
This application provides a semiconductor switch device, a manufacturing method thereof, and a solid-state phase shifter. The semiconductor switch device includes a first semiconductor layer, intrinsic layers, and second semiconductor layers that are stacked. There are at least two intrinsic layers. The second semiconductors are in a one-to-one correspondence with the intrinsic layers, and each second semiconductor layer is stacked on a side of a corresponding intrinsic layer away from the first semiconductor layer. The first semiconductor layer forms one PIN diode together with each first intrinsic layer and each second semiconductor layer. Any two adjacent PIN diodes are electrically isolated. Automatic parameter matching between the two PIN diodes is implemented by using a geometrically symmetric figure with centers of the two PIN diodes aligned, to improve linearity. In addition, the entire semiconductor switch device has a compact structure, to improve an integration degree and reduce costs.
Abstract:
The present invention discloses an ultra wide band fixed phase shifter based on a capacitive load, which includes N physically separated phase shift units, and each phase shift unit includes an orthocoupler, first and second transmission lines, and first and second capacitive loads, wherein the orthocoupler includes an input end, a coupling end, a direct-connection end and an isolation end, one end of the first transmission line serves as a signal input end of the phase shift unit and the other end is connected with the input end of the orthocoupler, one end of the second transmission line serves as a signal output end of the phase shift unit and the other end is connected with the isolation end of the orthocoupler; one end of the first capacitive load is connected with the coupling end of the orthocoupler and the other end is grounded; one end of the second capacitive load is connected with the direct-connection end of the orthocoupler and the other end is grounded. The ultra wide band fixed phase shifter based on a capacitive load has compact structure, small area occupation and small insertion loss, does not need extra power supply and logical control, and can be widely applied.
Abstract:
A phase shifter which uses bragg gratings and having tunable phase shift functions with respect to input signals in an RF band without using a separate RF device. The phase shifter includes a dielectric layer, a first conductive layer formed on an upper surface of the dielectric layer lengthwise along the dielectric layer so as to provide a signal path for the input signal, a second conductive layer formed at a first end of a lower surface of the dielectric layer so as to form bragg gratings lengthwise along the dielectric layer, a third conductive layer formed at a second end of the lower surface of the dielectric layer in line with the second conductive layer so as to form bragg gratings lengthwise along the dielectric layer, and a moving unit for adjusting a distance between the second conductive layer and the third conductive layer within a predetermined length. The phase of the signal of the RF band is shifted by adjusting the distance between the second and third conductive layers without using a separate RF device, thereby significantly reducing the manufacturing cost for the phase shifter.
Abstract:
The stripline-slotline digital phase shifter is located between a ground plane associated with a patch antenna and another ground plane associated with the other patch antenna, or other output circuits. It is comprised of a section of stripline adjacent to a slot in ground plane associated with the receiving patch antenna which transitions an input electromagnetic signal to a plurality of oval slotlines, called bit circuits, of varying lengths which form a delay circuit by shifting the phase of the input electromagnetic signal. The varying lengths of slotline are switched into and out of the circuit to provide a predetermined amount of delay and the phase adjusted electromagnetic signal is transitioned to portion of stripline adjacent to a slot associated with the transmission patch antenna or other output circuits.
Abstract:
A high-frequency circuit device includes a varactor diode having a first terminal and a second terminal, a first strip line connected to the first terminal of the varactor diode, a voltage being applied to the varactor diode via the first terminal, a second strip line having a first end connected to the second terminal of the varactor diode, and a second open end. The second strip line has a length so as to obtain an equivalent strip line length taking into capacitances of the varactor diode and the second strip line. The equivalent strip line length determines a characteristic of the high-frequency circuit device.
Abstract:
The present invention is a superconducting opto-electronic phase shifter which is achieved by illuminating a superconducting microstrip line, which is fabricated on a dielectric substrate, with an optical beam of a predetermined intensity and shape. Because the superconducting microstrip will exhibit a local surface resistance when and where illuminated, the microstrip line will be artificially narrowed thereby producing a phase shift. This occurs because as the width of a superconducting microstrip line narrows the velocity of the carder signal increases. Therefore, if the illumination of the superconducting microstrip line causes a local surface resistance, then the surface impedance of the microstrip line is increased causing the effective width of the microstrip line to decrease. Hence, the artificial decrease in the width of the microstrip will cause the phase of the carrier signal to shift.
Abstract:
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.