摘要:
Channel error protection is provided for a source coded bit stream in a communication system by a combination of outer channel coding and inner channel coding implemented across different network layers of the system. One or more of a number of different portions of the source coded bit stream are outer channel coded in a first network layer of the system, e.g., an application layer, using a designated outer channel code, so as to provide an outer channel coded bit stream having different levels of error protection for each of the different portions of the source coded bit stream. The outer channel coded bit stream is then inner channel coded in a second network layer of the system, e.g., a physical layer, using a designated inner channel code to thereby generate a channel coded bit stream. The channel coded bit stream may then be subject to further processing operations prior to transmission in the communication system. Advantageously, the invention allows unequal channel error protection to be provided for source coded audio, image, video or multimedia bit streams in a standard second generation (2G) or third generation (3G) wireless system in a manner which is independent of the physical layer coding infrastructure of the system.
摘要:
An error correcting decoder for decoding a plurality of block units of data, the data being encoded with a plurality of parameters, comprising a plurality of error correcting decoding circuits for inputting and outputting the block units of data and for performing error correction decoding for the block units of data on the basis of the plurality of parameters, a selection circuit for selecting one of the block units from an output of the plurality of error correction decoding circuits on the basis of the encoding parameters of the selected block, a delay circuit for adding delay to the output of the plurality of the plurality of error correction decoding circuits wherein the delay equalizes a time between the inputted plurality of block units of data and outputted plurality of the selected block units and a multiplexing circuit for outputting a multiplexed signal from a plurality of the selected block units in the same order as that of the inputted plurality of block units of data.
摘要:
An adaptive and dynamic forward error correction scheme for a communication channel is disclosed. The method and apparatus calculates the actual bit error rate for comparison with a target bit error rate. When a channel is performing better than required by the performance specifications, the forward error correction power can be reduced to provide greater throughput. If the calculated actual bit error rate is greater than the target bit error rate, then the forward error correction power is increased in an attempt to lower the calculated bit error rate. A feedback loop is employed to continually calculate revised bit error rates as the forward error correction power is increased or decreased.
摘要:
A method and apparatus for iterative decoding of a coded information signal that allows quality of service, QoS, parameters to be dynamically balanced in a telecommunications system. In an embodiment, an iterative decoder performs decoding on a coded information signal based on minimum and maximum values for the number of decoding iterations to be performed for a particular data transmission. The minimum and maximum values for the number of decoding iterations are determined according to QoS requirements that are given in terms of BER and Tdelay.
摘要:
The invention provides methods and apparatus for processing information, e.g., audio, video or image information, for transmission in a communication system. In an illustrative embodiment, the value of a single-bit or multiple-bit criticality flag is determined for each of the programs in a set of multiple programs to be transmitted in the system. The information bits for each of the programs are then separated into n classes, where n is greater than or equal to two, based on the values of the criticality flags for the programs. Each of the classes is provided with a different level of error protection, e.g., through the use of different convolutional codes or other suitable techniques. The program or programs having the highest criticality flag values in a given frame or other designated time interval thus have a larger percentage of their information bits assigned to the class that is provided with the highest level of error protection. The assignment of the multiple program bits to the classes, as well as the characteristics of the classes, may be fixed for a designated number of program frames, or dynamic, i.e., permitted to vary from frame to frame.
摘要:
A weighting device utilizes soft reliability values and class weighting factors to detect errors in digitized information. The soft reliability values can be provided by a decoder that processes the information according to a predetermined coding scheme. Bits representing the encoded information are classified accorded to classes defined by a bit sensitivity analysis. The bit sensitivity analysis can be based on subjective and/or objective criteria. As incoming bits are received by the weighting device, they are classified and class reliability values are computed for each class based on the soft reliability values. The class reliability values are then weighted to produce weighted class reliability values. Error concealment algorithms, coding rate determination, and coding rate requests can be activated based on the weighted class reliability values.
摘要:
Data for transmission may be convolutionally encoded and punctured prior to transmission. The invention relates to a method and apparatus for decoding such data. In accordance with the invention, a table of error metrics is prepared when a given group (Gt) of n bits is received at a particular time (t). The error metrics (Mti) are calculated for comparisons of the n bits received with each possible permutation (Pi) of n bits. These error metrics (Mti) are placed in the metric table. Next a look-up table (Tt) is consulted which lists each state change (Sj) which the encoder could have undergone at the particular time (t) together with the permutation (Pi) of bits which would have been produced by the encoder for that state change. The look-up table (Tt) is particular to the puncturing scheme which the encoder uses at the particular time (t). The metric table is then used to add to the look-up table (Tt) the error metric (Mti) appropriate to each state change (Si) in the table (Tt). These error metrics are then used to update the cumulative metric of the decoder.
摘要:
A method and apparatus for providing auxiliary data in a idle potion of a slot in a time division multiple access system is disclosed. A speech coder converts speech into digital signals that are coupled to a convolutional coder. The convolutional coder processes the digital signals using three or four connection polynomials to create two sets of outputs. One set of outputs, which is generated from first and second connection polynomials is identical to the standard output of a IS-136 convolutional coder. The second set of outputs, which are the auxiliary data, are generated using third and fourth connection polynomials. The second set of outputs is coupled to a puncturing function, which appropriately deletes portions of the second set of outputs. The remaining portion of the second set of outputs is transmitted in the idle portion of a time slot.
摘要:
A dynamic error correction system for a bi-directional digital data transmission system. The transmission system of the present invention includes a transmitter adapted to encode information into a signal. A receiver receives the signal and decodes the information encoded thereon. The signal is transmitted from the transmitter to the receiver via a communications channel. A signal quality/error rate detector is coupled to the receiver and is adapted to detect a signal quality and/or an error rate in the information transmitted from the transmitter. The receiver is adapted to implement at least a first and second error correction process, depending upon the detected signal quality/error rate. The first error correction process is more robust and more capable than the second error correction process. The receiver coordinates the implemented error correction process with the transmitter via a feedback channel. The receiver dynamically selects the first or second error correction process for implementation in response to the detected signal quality/error rate and coordinates the selection with the transmitter such that error correction employed by the receiver and transmitter is tailored to the condition of the communications channel.
摘要:
In order to transmit an inter-frame coded video signal, such as an MPEG-coded video signal, over a packet-based network such as the Internet, the video signal associated with at least one video frame, is split (102, 402) into a high priority partition and a low priority partition. A systematic forward error erasure/correction (FEC) code (108), such as a Reed Solomon (n,k) code, is then applied to bytes in the high priority partition. The forward error/erasure corrected high priority partition bytes and the low priority partition bytes are then combined (110) into n packets for transmission over the packet network to a receiver/decoder. Each of the n transmitted packets contains a combination of both high priority partition data bytes and low priority partition information bytes. In k of those packets the high priority partition data bytes are all high priority partition information bytes and in n-k of those packets all the high priority partition data byte are parity bytes produced by the FEC coding. More specifically, for each high priority partition byte position within the n packets, the forward error/erasure correction code is applied using one high priority partition information byte from the same byte position in each of those k packets to determine n-k parity bytes, which are arranged, one byte per packet, in the n-k packets containing high priority partition parity bytes. If up to n-k packets are lost in transmission over the packet network to the receiver (500, 600), then the high priority partition bytes in such lost packets can be recovered to applying FEC decoding (506) to the high partition bytes in the received packets. The most visually significant information is thus protected against packet loss over the network.