Abstract:
A system and method provides intermodulation (IM) interference mitigation in a two-way radio receiver (100) by utilizing various states of an automatic gain control circuit (AGC) (118) controlled by RSSI levels and timers.
Abstract:
The present invention discloses a workflow mining system which can evaluate, analyze and determine previous execution results of processes or activities by applying a data mining technique to workflow log data accumulated during the operation of a workflow system, and a method therefor. The workflow mining system extracts necessary data from a database of a workflow server, generates an analysis table, performs a preprocessing process for removing unnecessary attributes on the basis of the extracted data or converting a digital variable into a symbolic variable, and analyzes a decision making tree or association by using the preprocessed data. C4.5 algorithm is used for the decision making tree analysis and Apriori algorithm is used for the association analysis.
Abstract:
A method of synchronising a wireless communication unit in a communication system, the method comprising at said wireless communication unit the steps of: monitoring transmissions from a communication system and processing (400) frequency and/or timing information from the communication system. The method further includes the steps of transmitting (404) frequency and/or timing information by said wireless communication unit; receiving and processing (406) said frequency and/or timing information transmitted by said wireless communication unit at a receiving portion of said wireless communication unit. The wireless communication unit then compares frequency and/or timing information transmitted from the communication system to that transmitted by said wireless communication unit; and synchronises said wireless communication unit if said comparison step does not yield a match. A wireless communication unit and a communication system are also provided.
Abstract:
A method and apparatus for reducing crosstalk in a multi-channel communication system is disclosed. In one embodiment, outgoing signals in a multi-channel environment are manipulated into a transform domain, such as the frequency domain. Thereafter, the signals may be combined and modified based on a weighting variable to create a cancellation signal. Combined processing greatly reduces system complexity and increases processing speed. After processing in the transform domain, the cancellation signal undergoes further processing to return the cancellation signal into the time domain. The cancellation signal may then be combined with received signals to cancel crosstalk or echo. A method and apparatus for crosstalk cancellation in the analog domain and digital domain are also disclosed. Cancellation at least partially in the analog domain reduces the dynamic range requirements for digital to analog converters within the front-end processing system of a receiver and thereby reduces clipping and increases operating speed.
Abstract:
The present invention provides systems and methods for pseudo-random signal generation in a multi-carrier communications system. In embodiments, a transmitter includes a pseudo-random bit sequence (PRBS) generator and Medley signal generator. The PRBS generator can operate in at least one of the following modes: a parameter selection mode, a scrambler mode, and/or a combination mode. The Medley signal generator receives an output bit sequence from the PRBS generator. The Medley signal generator then generates a Medley signal which includes a set of Medley tones encoded based on the output bit sequence from the PRBS generator. The Medley signal is then sent over channels of a multi-carrier communication system such as an ADSL system.
Abstract:
A configurable dual-band RF transceiver with a cascaded frequency conversion scheme (DBXVR) is disclosed for the processing of any selected RF channel signal specified by the open standard IEEE 802.11 a/b/g for Wireless LAN. The DBXVR comprises two switchably connected antennae for receiving and transmitting any selected RF channel signal and two subsets of signal processing hardware. The first signal processing subset is designed to perform all related frequency conversion, signal filtering and amplification between the b/g-band and its corresponding Baseband Inphase (I) and Quadrature (Q) signals. The second signal processing subset is designed to perform all related frequency conversion, signal filtering and amplification between the a-band, located at a disjointed and much higher frequency range than the b/g-band, and its corresponding b/g-band frequency for an ultimate, cascaded second signal processing into the Baseband I and Q signals using essentially the same hardware from the first signal processing subset.
Abstract:
Several techniques are provided for use by wireless devices to avoid interference with signals that are of a periodic or quasi-periodic nature that may operate in the same frequency band and proximity. In some cases, the periodic signals are detected and their timing is determined so as to predict when a next interfering event will occur. Devices that are affected by the periodic signal (such as an affected device with information to be transmitted or devices that have information to be transmitted to the affected device) are controlled to prevent transmissions during the interfering intervals. In addition, a process is provided to dynamically fragment a transmit frame of information to transmit part of the information before the interfering interval and the remainder of the information after the interfering interval, rather than waiting to transmit the entire frame until after the interfering interval. Moreover, techniques are provided to correct for clock drift between the periodic signal and a device affected by the periodic signal, as well as for clock drift between a device affected by the periodic signal and other devices that communicate with that device. These techniques prevent interference with periodic signals and in so doing, improve the quality of service of the communication link for both the interfering devices and the other devices.
Abstract:
An apparatus and method to reduce interference in a communication device particularly effective for second-order interference in direct conversion receiver from a co-located transmitter. This is accomplished by characterizing a transfer function of a transmission path from the transmitter to the receiver and applying this transfer function to the baseband signal from the transmitter to provide an estimation of interference to be expected in the received signal. The estimated interference is subtracted from the receiver baseband signal to reduce interference. Adaptive filtering can also be applied to further minimize interference dynamically.
Abstract:
A method and strategy by which cellular networks can dynamically adapt a radio link according to changing conditions of interference. In particular, the method applies to uplink time slots in UMTS-TDD systems. A preferred embodiment describes performing dynamic link adaptation when a UE has two CCTrCHs in an uplink time slot. The method and strategy of the invention are applicable for UMTS-FDD, CDMA-2000, and other systems as well.
Abstract:
A communication device and method for operating the same includes a GPS receiver that periodically generates a position signal, a wireless modem transmitting or receiving messages and a controller that is coupled to the receiver and the modem. The controller discontinues operating the wireless modem when the GPS signal generates the position signal and vice versa to reduce interference with the other device.