Abstract:
The present invention is directed to a method for the production of lithium hydroxide (LiOH) directly from lithium chloride (LiCl), without the need for an intermediate production of lithium carbonate or similar. Specifically, the invention teaches a method for producing lithium hydroxide directly from lithium chloride, wherein LiCl is converted to LiOH from a brine, the LiOH is then crystallised to obtain crude lithium hydroxide monohydrate (crude LiOH·H2O) and then undergoes a second crystallization to produce pure LiOH·H2O. Finally, it is dried and packaged.
Abstract:
Methods and systems for production of lithium hydroxide and lithium carbonate are described. One or more embodiments of the method include producing lithium hydroxide from potassium chloride, lithium chloride, and water. One or more embodiments of the method include producing lithium carbonate from potassium chloride, lithium chloride, water, and a carbon dioxide source. One or more embodiments of the method include producing lithium carbonate from sodium chloride, lithium chloride, water, and a carbon dioxide source.
Abstract:
The invention relates to the complex processing of a nuclear power plant's NPP's liquid, boron-containing waste with a complex composition, being generated during the operation of NPPs, including of ones VVER-type, and can be used to isolate boric and nitric acids and hydroxides of sodium and potassium for their reuse in the NPP process cycle. The invention allows to obtain crystalline boric acid and highly concentrated solutions of nitric acid and hydroxides of sodium and potassium, suitable for reuse in the NPP process cycle and for general industrial use. Conducting electrodialysis at low values of current and voltage provides a reduction of the method's energy intensity. The involvement of all major components of waste mother liquors into the processing reduces the amount of stored and disposed hazardous waste.
Abstract:
A process for the purification of solutions containing sodium or potassium carbonate, sulphate, hydroxide or hydrogen carbonate, and mainly at least one of the metals belonging to the group formed by vanadium, uranium or molybdenum, in the form of sodium or potassium salts, and inorganic and/or organic impurities, wherein the above-mentioned solutions are completely or partially caustified by the addition of an adequate amount of lime, whereby a first precipitate essentially containing calcium carbonate is separated, and the separated liquor is concentrated by evaporation until the hydroxide content is at most equal to 50%, to cause the production of a second precipitate which essentially comprises sodium or potassium sulphate, then, after separation thereof, a hydroxide-rich liquor is collected.This process is more particularly adapted for treatments of liquors resulting from the alkaline attach of vanadiferous and uraniferous ores.
Abstract:
Potassium is recovered as a dilute KOH solution from residue solids resulting from conversion of manganese ore to K.sub.2 MnO.sub.4 by reacting the solids with a Ca(OH).sub.2 under specified conditions. The resulting KOH solution can be returned to the K.sub.2 MnO.sub.4 plant and the solids of reduced potassium content are suitable for disposal in a landfill.