Abstract:
A system is provided wherein a devolatilizing reactor is used to make combinatorial libraries of materials. Examples of suitable reactors include continuous high viscosity devolatilizers and continuous devolatilizing kneaders.
Abstract:
The device of the present invention delivers reactants to a reaction zone in a plug flow reactor. The feedblock encircles the reaction zone. Reactants enter the feedblock through an inlet port leading to a manifold for the delivery of reactants into a plurality of feed ports that are in connection with the reaction zone of a plug flow reactor. The invention additionally encompasses plug flow reactors including one or more feedblocks and the method of utilizing the feedblock for the reduction of radial variation in concentration upon entry of a reactant into the reaction zone.
Abstract:
A method is provided for making a device comprising aligned semiconducting nanoparticles and a receptor substrate comprising the steps of: a) aligning a plurality of first semiconducting nanoparticles; b) depositing the aligned first semiconducting nanoparticles on a first donor sheet; and c) transferring at least a portion of the aligned first semiconducting nanoparticles to a receptor substrate by the application of laser radiation. Typically, the semiconducting nanoparticles are inorganic semiconducting nanoparticles. The alignment step may be accomplished by any suitable method, typically including: 1) alignment by capillary flow in or on a textured or microchanneled surface; 2) alignment by templating on a self-assembled monolayer (SAM); 3) alignment by templating on a textured polymer surface; or 4) alignment by mixing in a composition that includes nematic liquid crystals followed by shear orientation of the nematic liquid crystals. In some embodiments, the method additionally comprises the steps of: d) aligning a second plurality of second nanoparticles; e) depositing the aligned second nanoparticles on the same donor sheet or a second donor sheet; and f) transferring at least a portion of the aligned second nanoparticles to the same receptor substrate by the application of laser radiation. The second nanoparticles may be conducting particles, non-conducting particles, or semiconducting nanoparticles, including inorganic semiconducting nanoparticles, and may be the same or different in composition from the first semiconducting nanoparticles. In addition, devices made according to the methods of the present invention are provided.
Abstract:
The present invention discloses a continuous process for the production of polymerized controlled architectures materials under high solids loading conditions. The materials are made under stirred, plug-flow and temperature-controlled conditions.
Abstract:
A method of making a filled resin includes the steps of: Providing a wiped film evaporator with an internal evaporator chamber maintained under vacuum and having an internal chamber wall maintained at an elevated temperature; introducing solvent-borne particles and organic matrix into the internal chamber; and compounding the solvent-borne particles and the organic matrix in the internal evaporator chamber by forming a thin film against the internal chamber wall, the thin film including organic matrix and particles, and the vacuum conditions and elevated temperature being sufficient to remove solvent from the particles and organic matrix to provide the filled resin. Less than about 10% of the particles in the resulting filled resin are agglomerated.
Abstract:
A mixture of layered silicate, block copolymer having at least one block that is compatible with the first layered silicate, and a solvent is sheared while the solvent is removed.
Abstract:
Compositions comprising surface-modified nanocalcite particles dispersed in a curable resin, and to coatings and fibrous composites incorporating such compositions are described. The surface-modifying agents include a binding group ionically associated with the calcite and a compatiblizing segment, compatible with the curable resin. The surface-modifying agent may also include a reactive group capable of reacting with the curable resin. Methods of preparing nanocalcite composites and coating a fibrous composites prepared from such nanocalcite composites are also described.
Abstract:
Certain block copolymers may be suitable as compatibilizers in multiple component polymeric blends and composites. The utilization of at least one block copolymer in polymeric blends augments physical properties in the polymeric blend composite. The addition of block copolymers to polymeric blends may enhance certain mechanical properties of the composite, such as tensile strength, impact resistance, modulus, and heat stability, over the initial levels achieved by polymeric blends without incorporating block copolymers.