Abstract:
A ventilation gas cooling apparatus or unit which, in an exemplary embodiment, is configured in a modular form adapted for selective removable engagement to a ventilator. The cooling unit includes a gas inlet port, a gas delivery port, a pressure sensing port, and a thermoelectric cooler. The inlet port is fluidly connectible to a source of therapeutic breathing gas at an external end and is fluidly connectible to an inlet of the ventilator at an internal end. The delivery port is fluidly connectible to a patient circuit at an external end and is fluidly connectable to an outlet of the ventilator at an internal end. The pressure sensing port is fluidly connectible to both a pressure sensing port of the ventilator and to the patient circuit. The cooling unit may further include a cooling fluid system which is operative to circulate either a gas coolant or a liquid coolant along at least a portion of a multi-lumen tube which is integrated into the patient circuit.
Abstract:
Systems and methods are provided for humidifying ventilation gas. Systems and methods may include a nasal interface apparatus for receiving ventilation gas from gas delivery tubing and for humidifying ventilation gas. The nasal interface apparatus may have one or more channels within the nasal interface to deliver gas from a gas delivery circuit to a patient's nose; one or more structures in fluid communication with the one or more channels to direct ventilation gas to the patient's nose; and a hygroscopic material within the nasal interface in the flow path of the ventilation gas.
Abstract:
Indicating fit status of a mask in communication with a respiratory assistance device is disclosed. Upon initiating a therapeutic gas delivery from the respiratory assistance device to the mask, one or more measurements from respective one or more sensors of the respiratory assistance device is received. A leakage value from these measurements is derived, and a mask fit index is assigned. This is based at least upon a correlation of the leakage value to a particular sub-range of predetermined leakage values that corresponds to the mask fit index. The particular sub-range of predetermined leakage values is one among a plurality of sub-ranges, which together comprises an overall mask fit range defined at least by an ideal mask fit region, a loose mask fit region, and a tight mask fit region. A mask fit status based upon the assigned mask fit index is output to an indicator interface.
Abstract:
In accordance with the present invention, there is provided a mask, such as a nasal pillows mask, for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The mask of the present invention further includes a heat and moisture exchange (HME) device which is directly integrated into the housing or cushion thereof (thus residing in extremely close proximity to the patient's nostrils), and is further uniquely configured to induce a flow pattern between it and the cushion which maximizes the transmission of heat and moisture to air which is inhaled by and exhaled from the patient through the mask.
Abstract:
In accordance with the present invention, there is provided various tubing arrangements and an associated Y -connector which may be used to facilitate the operative interface of the mask to a ventilator within a ventilation system. The tubing arrangement may comprise a pair of bi-lumen tubes. One end of each of the bi-lumen tubes is fluidly connected to the mask, with the opposite end being fluidly connected to the Y-connector.
Abstract:
In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present invention may further include a heat and moisture exchanger (HME) which is integrated therein.
Abstract:
A patient ventilation system including a ventilation interface and a ventilation source pneumatically coupled to a patient over the ventilation interface is disclosed. There is a controller that regulates airflow delivery from the ventilation source to the patient according to one or more predefined treatment configuration settings. The controller has an inactive ventilation state, a ventilation initiation state, a treatment state, a treatment suspension state, and a ventilation deactivation state. A display interface is coupled to the controller and configured to generate, exclusively, a device activation user element with the pressure controller in the inactive ventilation state, a fitment feedback indicator and a treatment screen in a ventilation initiation state, the fitment feedback indicator and a treatment status screen in the treatment state, a treatment suspension screen in the treatment suspension state, and a treatment conclusion screen in the ventilation deactivation state.
Abstract:
In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present invention may further include a heat and moisture exchanger (HME) which is integrated therein.
Abstract:
Modular ventilatory support systems and methods are disclosed in which a user may transition the system between a stationary configuration, an extended range configuration, and a stand-alone configuration. The modular components of the system include a compressor unit, a ventilator which may dock with the compressor unit, and a patient interface which may be connected to either the compressor unit or the ventilator unit. By rearranging these modular components into different configurations, mobility and duration of use may be optimized to fit the present needs. In the stationary configuration, mobility is most restricted, but duration of use is maximized. In the extended range configuration, mobility is enhanced, with duration of use limited by the battery power of the ventilator. In the stand-alone configuration, mobility is maximized, with duration of use limited by battery power of the ventilator and the quantity of an external gas supply.
Abstract:
A patient ventilation apparatus is disclosed. The apparatus includes an inlet port connectible to an oxygen source with pressurized oxygen enriched gas. An outlet port is connectible over a gas delivery conduit to a patient interface configured for fitment on a patient respiratory passageway. A valve is in pneumatic communication with the inlet port and with the outlet port. A first pressure sensor measures a patient interface pressure, which is connectible to the first pressure sensor over a pressure sensor line.