Abstract:
A branched aromatic ionomer is prepared by co-polymerizing a first monomer having an aromatic moiety and an unsaturated alkyl moiety and a second monomer having an ionic moiety and at least one unsaturated moiety. The ionic moiety may have a cationic group having a valence of +1 or greater. Styrene is among the useful first monomers and sodium methacrylate and zinc dimethacrylate are among the useful second monomers. The branched aromatic ionomers may be used to prepare articles including foamed polystyrene and microwave save dishes and utensils.
Abstract:
A method for the production of a vinyl aromatic polymer through the use of a supported light-induced photoreductant. A reactor is provided which contains a catalyst bed comprising a light-induced photoreductant component supported on a particulate substrate forming a permeable catalyst bed. A reaction stream comprising a vinyl aromatic monomer, a soluble reductant, and a transition metal salt is introduced into the reactor and passed through the catalyst bed. In addition, a gaseous oxidizing agent is introduced into the reactor and flowed through the catalyst bed and into contact with the reaction stream. The catalyst bed is irradiated with electromagnetic radiation in the ultraviolet or visible light range at an intensity sufficient to activate the photoreductant component and produce a free radical to initiate polymerization of the vinyl aromatic monomer to form a corresponding vinyl aromatic polymer. The vinyl aromatic polymer is then recovered from the reactor. The photoreductant component is a photoreductant dye, such as a group consisting of acridine, methylene blue, rose bengal, tetraphenylporphine, A protoporphyrin, A phthalocyanine and eosin-y and erythrosin-b. The transition metal salt may be an iron, cobalt or manganese salt and the soluble reductant is selected from the group consisting of diethanolamine, thiodiethanol, triethanolamine, benzoin, ascorbic acid, ester, glyoxal trimer and toluene sulfinic acid.
Abstract:
It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of at least one multifunctional initiator, at least one chain transfer agent, and at least one cross-linking agent. The presence of the multifunctional initiator tends to cause more branched structures in the polystyrene. A mathematical model that helps optimize the levels of these additives for given molecular weights, melt flow indices (MFIs) and zero shear viscosities (eta0) has also been discovered.
Abstract:
[0035] A process for the preparation of a hydroperoxide functionalized rubber compound by the conversion of triplet state oxygen to singlet state oxygen in the presence of oxygen and a light-induced photoreductant. A dispersion of an unsaturated rubber component in a carrier solvent is introduced into a reactor containing a permeable catalyst bed comprising a light-induced photoreductant component supported on a particulate substrate component and passed through the catalyst bed. A gaseous oxidizing agent is passed through the catalyst bed in contact with the rubber-containing dispersion. The catalyst bed is irradiated with electromagnetic light radiation in the ultraviolet or visible light range at an intensity sufficient to convert triplet oxygen in the oxygenated rubber component to singlet oxygen. The oxygenated rubber component is then recovered from the reactor. The reactor can comprise a tubular outer shell and a tubular inner member having a permeable wall defining an annular space containing photoreductant-supported substrate material. The oxidizing agent is introduced into the inner member and radially dispersed outward from this member into contact with the supported photoreductant. The solvent rubber component is concurrently passed into contact with the catalyst bed.
Abstract:
It has been discovered that improved polystyrene products may be obtained by polymerizing styrene in the presence of at least one multifunctional initiator that is trifunctional or tetrafunctional and at least one lower functionality initiator that is difunctional or monofunctional. These polymers may have increased Mz, increased MFI, and increased MWD. Optionally the resin may include at least one chain transfer agent, at least one cross-linking agent and/or a styrene-conjugated diene-styrene block copolymer. The presence of the multifunctional initiator tends to cause more branched structures in the polystyrene.
Abstract:
A plug flow reactor having an inner shell (27) surrounded by outer shell (21) and having at least one annular flow passage (35) therebetween can be used to prepare compositions, including polymers. The plug flow reactor also includes inlet port (36), an outlet port (37) and a plurality of exchanger tubes (26) wherein the exchanger tubes are in fluid communication to the at least one annular flow passage. Polystyrene and high impact polystyrene can be prepared using the reactor.
Abstract:
A continuous process for producing high impact polystyrene comprising feeding at least one vinyl aromatic monomer, an elastomer, and a free radical initiator to a first linear flow reactor to form a reaction mixture, polymerizing the reaction mixture in said linear flow reactor to at least the phase inversion point of the mixture, and feeding the reaction mixture from the first linear flow reactor to a second reactor for post-inversion polymerization of the mixture. A method of producing an elastomer-reinforced polymer comprising inverting a reaction mixture comprising at least one vinyl aromatic monomer, an elastomer, and a free radical initiator in a plug flow reactor. A high impact polystyrene reactor system, comprising a linear flow reactor having an inlet and an outlet, and a continuously stirred tank reactor having an inlet in fluid communication with the linear flow reactor outlet and receiving an effluent from the linear flow reactor.
Abstract:
Disclosed is a process for devolatilizing a polymer comprising the polymer through a devolatizer comprising a plate heat exchanger wherein the plate heat exchanger are heated by a plurality of heating tubes and wherein the heating tube comprises a return tube nested inside of a supply tube. The use of the disclosed invention allows for a comparatively small heat profile across heating plates as compared to prior art plate heat exchangers.
Abstract:
3,4-Dichlorobutene-1 is produced by a process comprising the step of contacting 1,4-dichlorobutene-2 with either 1) a ferric carboxylate catalyst of the formula (I) where R is an alkyl or alkenyl group of 4-18 carbon atoms, a cycloalkyl or cycloalkenyl group of 6-18 carbon atoms or an aryl group selected from phenyl, benzyl, xylyl, tolyl, and naphthyl groups, whereby a portion of the 1,4-dichlorobutene-2 is isomerized to form 3,4-dichlorobutene-1, or 2) a ferric carboxylate catalyst of the formula (II) where R, R' and R'' are independently alkyl or alkenyl groups of 4-18 carbon atoms, cycloalkyl or cycloalkenyl groups of 6-18 carbon atoms or aryl groups selected from phenyl, benzyl, xylyl, tolyl, and naphthyl groups, the sum of m, n and o is 3 and m, n and o are independently 0, 1 or 2, whereby a portion of the 1,4-dichlorobutene-2 is isomerized to form 3,4-dichlorobutene-1.