Abstract:
A method for designing a lighting system, including: obtaining a selection of a color temperature (CT); obtaining, for the CT, a first spectral power distribution (SPD) corresponding to a low value color rendering index (CRI) and having a first plurality of peak wavelengths; obtaining, for the CT, a second SPD corresponding to a high value CRI and having a second plurality of peak wavelengths; and identifying a plurality of common peak wavelengths shared by the first SPD and the second SPD, where the lighting system includes a first plurality of light sources corresponding to the plurality of common peak wavelengths and a second plurality of light sources corresponding to a plurality of remaining peak wavelengths of the second plurality of peak wavelengths, and where the lighting system activates the second plurality of light sources in response to an event.
Abstract:
A light emitting device includes a substrate layer, a first electrode layer, a light emitting layer, and a patterned second electrode layer. The patterned second electrode layer includes a periodic grating structure having a grating period λ g less than or equal to 200 nm and the patterned second electrode layer and the light emitting layer are separated by at most 100 nm.
Abstract:
A method, computer program product, and system of stitching aerial data using information from at least one previous image are disclosed, the method includes: capturing a plurality of images of the landscape and storing the plurality of images with image metadata, the image metadata including at least one or more of the following parameters: latitude and longitude, altitude, pitch angle, roll angle, and yaw angles; generating a set of transformed images based on the image metadata, wherein generating the set of transformed images based on the image metadata comprises: setting a variable for each of the parameters; and calculating quality of fit for each of the plurality of images; normalizing the plurality of captured images using the set of transformed images; and assembling a new aerial image based on the plurality of captured images by fitting the plurality of normalized captured images to a top level image.
Abstract:
A method and system of calibrating multispectral images from a camera on an aerial vehicle, the method including: capturing multispectral images of an area at a plurality of intervals with a multispectral imaging camera; simultaneously or at an arbitrary time capturing sunlight radiance data for each of the captured images; correlating the images with the sunlight radiance data; and calibrating the multispectral images based on the sunlight radiance data to normalize the multispectral images to one or more previous images of the area.