Abstract:
A radio frequency digital-to-analog converter (RF-DAC) transmitter is provided that includes an in-phase channel, a quadrature-phase channel, a first intermediate-phase channel, and a second intermediate-phase channel. Each channel is configured to convert a respective baseband signal to an RF signal where each channel includes a pair of interleaved RF-DACs for producing a pair of interleaved RF signals and a subtractor.
Abstract:
Certain aspects provide a circuit for frequency conversion. The circuit includes first mixer circuitry coupled to a load circuit and having a first mixer configured to generate a first portion of a frequency-converted differential signal to be provided to the load circuit based on first differential input signals and second differential input signals, and a second mixer configured to generate a second portion of the frequency-converted differential signal based on third differential input signals and fourth differential input signals. The circuit also includes second mixer circuitry coupled to another load circuit and having a third mixer configured to generate a first portion of another frequency-converted differential signal based on the first differential input signals and the fourth differential input signals, and a fourth mixer configured to generate a second portion of the other frequency-converted differential signal based on the third differential input signals and the second differential input signals.
Abstract:
Techniques for designing baseband processing circuitry for radio IC's. In an aspect, techniques for differential-to-single-ended conversion in a baseband portion of the IC are disclosed to reduce the pin count and package size for RF IC's. In another aspect, the converter includes selectable narrowband and wideband amplifiers, wherein the wideband amplifiers may be implemented using transistor devices having smaller area than corresponding transistor devices of narrowband amplifiers. Further techniques for bypassing one or more elements, and for implementing a low-pass filter of the converter using an R-C filter network, are described.
Abstract:
An RF flip chip is provided in which a local bump region adjacent a die comer includes a balun having a centrally-located bump. The centrally-located bump may be floating with respect to signaling within the balun. The local bump region includes a crack stop region at the die comer in which bumps are excluded. The local bump region also includes at least one output bump for the balun.
Abstract:
A baseband filter and upconverter with configurable efficiency for use in wireless transmitters is disclosed. In an exemplary embodiment, an apparatus is provided that includes a baseband filter having configurable efficiency, and an upconverter having configurable efficiency and coupled to the baseband filter. The baseband filter and upconverter are configured to operate at a first efficiency level in a first output power range and to operate at a second efficiency level in a second output power range.
Abstract:
A high efficiency transmitter is disclosed. In an exemplary embodiment, a transmitter is provided that includes a first transmission path configured to receive a baseband signal and generate a first RF output when output power is in a first output power range, and a second transmission path configured to receive the baseband signal and generate a second RF output when the output power is in a second output power range.