Abstract:
Circuits and methods for compensating variation in an amplitude-regulated oscillator are provided. In one example, the oscillator includes a diode clamp having back-to-back diode-connected transistors with body terminals. Circuits and methods modulate a body-source voltage of the diode-connected transistors to compensate for process, temperature, and voltage variation.
Abstract:
Certain aspects of the present disclosure generally relate to circuitry and techniques for digital-to-analog conversion. One example device for digital-to-analog conversion generally includes: a digital-to-analog converter (DAC) having an input coupled to an input node of the device; a first retum-to-zero (RZ) DAC having an input coupled to an input node of the device; and a combiner, wherein an output of the first DAC is coupled to a first input of the combiner, and wherein an output of the first RZ DAC is coupled to a second input of the combiner.
Abstract:
An integrated circuit incorporating a bias circuit for a current-controlled oscillator (ICO) with improved power supply rejection ratio (PSRR) is described. The bias circuit for the ICO includes two error amplifiers. The first error amplifier regulates the bias voltage, VBN, referenced to a ground supply (GND). The second error amplifier regulates the bias voltage, VBP, referenced to a positive power supply (VDD). The VBP and VBN bias voltages have improved PSRR relative to conventional ICO bias circuits for noise injected into VDD and GND.
Abstract:
A digital-to-analog converter, RF transmit channel and method, for converting a digital signal of N bits having a set M of most significant bits and a set L of least significant bits to an analog signal, are disclosed. The digital signal defines a set of coded values which are converted to analog values and modulated on to a RF signal. The digital-to-analog converter includes a plurality of switches and an output stage, for providing at least a first differential output signal and a second differential output signal. The output stage modifies currents received from the plurality of switches, such that the value of the average output current of the first and second differential outputs signals is steered to a relatively low current value at the mid-point of the coded values.
Abstract:
Certain aspects of the present disclosure provide a digital-to-analog converter (DAC) system. The DAC system generally includes a plurality of current steering cells, each comprising a current source coupled to at least two current steering switches, wherein control inputs of the at least two current steering switches are coupled to an input path of the DAC system. The DAC system may also include a current source toggle circuit configured to selectively disable the current source of at least one of the plurality of current steering cells, and a feedforward path coupled between the input path and at least one control input of the current source toggle circuit.
Abstract:
Certain aspects of the present disclosure generally relate to circuitry and techniques for digital -to-analog conversion. For example, certain aspects provide an apparatus for digital-to-analog conversion. The apparatus generally includes a mixing-mode digital-to-analog converter (DAC), a duty cycle adjustment circuit having an input coupled to an input clock node and having an output coupled to a clock input of the mixing-mode DAC, and a current comparison circuit having inputs coupled to outputs of the mixing-mode DAC and having an output coupled to a control input of the duty cycle adjustment circuit.
Abstract:
A reverse current protection (RCP) circuit is provided that includes an RCP switch coupled between a power supply rail and a buffer power supply node. A control circuit powered by a buffer supply voltage on the buffer power supply node controls the RCP switch to open in response to a discharge of a power supply voltage carried on the power supply rail.
Abstract:
The apparatus may be an N-bit DAC including (2M-1) parallel stages associated with M most significant bits, and (N-M) stages associated with (N-M) least significant bits. The (2M-1) parallel stages may deliver a first current to current-summing nodes of the DAC. The (N-M) stages may include a resistive network and a second pair of switches, and may deliver a second current to the resistive network of the stage. Each resistive network may scale the respectively delivered currents according to a binary weight of a stage corresponding to the resistive network, and may deliver the scaled currents to the pair of current-summing nodes. At least one of the (N-M) stages may be separated from the remaining stages.
Abstract:
A radio frequency digital-to-analog converter (RF-DAC) transmitter is provided that includes an in-phase channel, a quadrature-phase channel, a first intermediate-phase channel, and a second intermediate-phase channel. Each channel is configured to convert a respective baseband signal to an RF signal where each channel includes a pair of interleaved RF-DACs for producing a pair of interleaved RF signals and a subtractor.
Abstract:
In one embodiment, a method for converting an input digital signal into an analog signal is provided. The method comprises modulating the input digital signal into a modulated digital signal, and converting the modulated digital signal into the analog signal using a digital-to-analog converter (DAC). The modulation shapes quantization noise of the DAC to place a notch at a frequency within an out-of-bound frequency band to reduce the quantization noise within the out-of-bound frequency band.