Abstract:
A method and apparatus for attenuating transmit digital to analog converter (DAC) spurs is provided. The method begins when a reference voltage is injected into an amplifier. Next, an output of the ground low drop-out regulator is measured and is them compared with the reference voltage. The output of the amplifier is then adjusted based on the results of the comparison. If the reference voltage is higher then the output of the ground low drop-out regulator the output of the amplifier is adjusted to ground. If the reference voltage is lower than the output of the ground low drop-out regulator then the output of the amplifier is adjusted to match the reference voltage.
Abstract:
Various aspects enable sensor data to be obtained from vehicles. Various aspects may enable data gathered by sensors of vehicles to be obtained by a data agency server and made available to third party client devices. In various aspects, a data agency server may direct a vehicle to drive from the vehicle's current location to a different specific location to gather a type of data. In some aspects, the type of data may be peripheral data that is not associated with driving operations of a vehicle. In some aspects, a data agency server may indicate one or more attributes of collection for the vehicle to utilize in gathering data. In some aspects, an attribute of collection may set a condition of the vehicle and/or the sensor utilized in gathering data. In some embodiments, vehicle owners/operators may be compensated for their vehicles being utilized to obtain data.
Abstract:
Certain aspects of the present disclosure generally relate to circuitry and techniques for digital-to-analog conversion. One example device for digital-to-analog conversion generally includes: a digital-to-analog converter (DAC) having an input coupled to an input node of the device; a first retum-to-zero (RZ) DAC having an input coupled to an input node of the device; and a combiner, wherein an output of the first DAC is coupled to a first input of the combiner, and wherein an output of the first RZ DAC is coupled to a second input of the combiner.
Abstract:
Certain aspects of the present disclosure provide a digital-to-analog converter (DAC) system. The DAC system generally includes a plurality of current steering cells, each comprising a current source coupled to at least two current steering switches, wherein control inputs of the at least two current steering switches are coupled to an input path of the DAC system. The DAC system may also include a current source toggle circuit configured to selectively disable the current source of at least one of the plurality of current steering cells, and a feedforward path coupled between the input path and at least one control input of the current source toggle circuit.
Abstract:
Certain aspects of the present disclosure generally relate to circuitry and techniques for digital -to-analog conversion. For example, certain aspects provide an apparatus for digital-to-analog conversion. The apparatus generally includes a mixing-mode digital-to-analog converter (DAC), a duty cycle adjustment circuit having an input coupled to an input clock node and having an output coupled to a clock input of the mixing-mode DAC, and a current comparison circuit having inputs coupled to outputs of the mixing-mode DAC and having an output coupled to a control input of the duty cycle adjustment circuit.
Abstract:
A radio frequency digital-to-analog converter (RF-DAC) transmitter is provided that includes an in-phase channel, a quadrature-phase channel, a first intermediate-phase channel, and a second intermediate-phase channel. Each channel is configured to convert a respective baseband signal to an RF signal where each channel includes a pair of interleaved RF-DACs for producing a pair of interleaved RF signals and a subtractor.
Abstract:
An apparatus is disclosed for proximity detection using a hybrid-transceiver. In an example aspect, the apparatus includes a hybrid transceiver coupled to a first antenna and a second antenna. The hybrid transceiver is configured to generate, in a digital domain, a digital baseband radar signal. The hybrid transceiver is also configured to transmit, via the first antenna, a radiofrequency transmit signal that is derived from the digital baseband radar signal. Via the second antenna, the hybrid transceiver is configured to receive a radiofrequency receive signal, which includes a portion of the radio-frequency transmit signal that is reflected by an object. In an analog domain, the hybrid transceiver is configured to generate an analog receive signal that includes a beat frequency, which is indicative of a frequency offset between the radio-frequency transmit signal and the radio-frequency receive signal. The analog receive signal is derived from the radio-frequency receive signal.
Abstract:
In one embodiment, a method for converting an input digital signal into an analog signal is provided. The method comprises modulating the input digital signal into a modulated digital signal, and converting the modulated digital signal into the analog signal using a digital-to-analog converter (DAC). The modulation shapes quantization noise of the DAC to place a notch at a frequency within an out-of-bound frequency band to reduce the quantization noise within the out-of-bound frequency band.