Abstract:
Embodiments discussed herein refer to systems, methods, and circuits for establishing EHF contactless communications links. The EHF contactless communication link may serve as an alternative to conventional board-to-board and device-to-device connectors. The link may be a low-latency protocol-transparent communication link capable of supporting a range of data rates. The link may be established through a close proximity coupling between devices, each including at least one EHF communication unit. Each EHF unit involved in establishing an EHF communication link may progress through a series of steps before data can be transferred between the devices. These steps may be controlled by one or more state machines that are being implemented in each EHF communication unit.
Abstract:
A communication device includes an EHF communication unit, a data signal line, and a protocol bridge element. The EHF communication unit includes a transceiver, and an antenna coupled to the transceiver. The data signal line carries a data signal conforming to a first communication protocol. The protocol bridge element is coupled to the data signal line and EHF communication unit, and configured to receive a first protocol-compliant data signal from the data signal line, translate the first protocol-compliant data signal to an outbound binary signal, time- compress the outbound binary signal, and transmit the outbound time-compressed signal to the transceiver. The protocol bridge element is further configured to receive an inbound time-compressed signal from the transceiver, time-decompress inbound time-compressed signal to an inbound binary signal, translate inbound binary signal to conform to a second communication protocol, and provide second protocol- compliant signal to the first data signal line.