Abstract:
The invention relates to optical conductors comprising one or more fibrillar organic supramolecular species comprising or consisting of an association of triarylamines stacked along an optical axis of one-dimensional electrically conductive nanowires extending between two gold electrodes used for cuipling light into and out of the nanowires. The optical guiding is due to surface plasmon coupling.
Abstract:
Electronic-photonic integrated circuits (EPICs), such a monolithically integrated circuit, are considered to be next generation technology that takes advantage of high-speed optical communication and nanoscale electronics. Atomically thin transition metal dichalcogenides (TMDs) may serve as a perfect platform to realize EPIC. The generation and detection of light by a monolayer TMD at nanoscale through surface plasmon polaritons (SPPs) may be utilized to provide optical communication. The bidirectional nature of the TMDs allow such a layer to be utilizes as part of emitters or photodetectors for EPICs.
Abstract:
Optische Diode (1) umfassend einen optischen Wellenleiter zur Leitung von Licht, vorzugsweise einer Lichtmode, mit einer Vakuum-Wellenlänge λ 0 , wobei der optische Wellenleiter einen Wellenleiterkern (2, 3, 14) mit einem ersten Brechungsindex n 1 aufweist und der Wellenleiterkern (2, 3, 14) von mindestens einem zweiten optischen Medium umgeben ist, welches mindestens einen zweiten Brechungsindex n2 aufweist, wobei n 1 > n 2 gilt, wobei der Wellenleiterkern (2, 3, 14) zumindest abschnittsweise eine kleinste laterale Abmessung (7) aufweist, die eine kleinste Abmessung eines Querschnitts (6) normal auf eine Ausbreitungsrichtung (5) des Lichts im Wellenleiterkern (2, 3, 14) ist, wobei die kleinste laterale Abmessung (7) grösser gleich λ 0 /(5*n 1 ) und kleiner gleich 20*λ 0 /n 1 ist, wobei die optische Diode (1) weiters mindestens ein Absorberelement (10, 11, 15, 16) umfasst, das in einem Nahfeld angeordnet ist, wobei das Nahfeld aus dem elektromagnetische Feld des Lichts der Vakuum-Wellenlänge λ 0 im Wellenleiterkern (2, 3, 14) und ausserhalb des Wellenleiterkerns (2, 3,14) bis zu einem Normalabstand (12) von 5*λ 0 besteht, wobei der Normalabstand (12) von einer eine optische Grenzfläche ausbildenden Oberflache (8) des Wellenleiterkerns (2, 3, 14) aus und in einer Richtung normal auf die Oberflache (8) gemessen ist. Erfindungsgemäss ist vorgesehen, dass das mindestens eine Absorberelement (10, 11, 15, 16) für das Licht der Vakuum- Wellenlänge λ 0 bei linkszirkularer Polarisation (σ - ) einerseits und bei rechtszirkularer Polarisation (σ + ) andererseits eine unterschiedlich starke Absorption aufweist.
Abstract:
The invention relates to a method for concentrating light by coupling light into a thin film waveguide (2, 4) arranged on a substrate (1), in particular via at least one of its parallel surfaces, the method further comprising the step of exciting in the thin-film-waveguide (2, 4) at least one lateral guided mode (5) having at least one node (6), preferably exactly one node (6), by interaction, in particular scattering, diffraction or surface plasmon excitation of the incident light with a nanopatterned discontinuous excitation layer (3) of material, in particular metal, preferably silver, the nanopatterned discontinuous excitation layer (3) being arranged in the thin-film-waveguide (2,4) at the position of the at least one node (6) of the guided lateral mode (5). The invention furthermore relates to a light concentrator comprising a thin film waveguide (2, 4) deposited on a substrate (1), the thin film waveguide (2, 4) having at least two parallel surfaces, light being coupable into the thin film waveguide (2, 4) via at least one of these surfaces, wherein the thin film waveguide (2, 4) is established as a collecting thin film waveguide (2, 3, 4) for collecting light by arranging a nanopatterned discontinuous excitation layer (3) of material, in particular of metal and preferably of silver at a position corresponding to the node position (6) of a guided mode (5) to be excited in the collecting thin film waveguide (2, 3, 4). The invention also relates to a method of fabricating such a light concentrator.
Abstract:
Die vorliegende Erfindung betrifft plasmonische Bauteile, insbesondere plasmonische Wellenleiter, sowie plasmonische Photodetektoren, welche auf dem Gebiet der Mikro- und Nanooptik eingesetzt werden können, insbesondere in der hochintegrierten optischen Kommunikationstechnik im Infrarotbereich (IR-Bereich) als auch in der Energietechnik, z.B. der Pholtovoltaik im sichtbaren Bereich. Zusätzlich gibt die vorliegende Erfindung ein Verfahren zur Herstellung eines plasmonischen Bauteils an, insbesondere zur Photodetektion auf Grundlage einer internen Photoemission.
Abstract:
The invention provides a lighting device (1) comprising (a) a light converter (100) comprising a light receiving face (110); and (b) a solid state light source (10) configured to generate a light source light (11) with a photon flux of at least 10 W/cm 2 at the light receiving face (110), wherein the light converter (100) is configured to convert at least part of the light source light (11) into light converter light (101) having a first frequency, wherein the light converter (100) comprises a semiconductor quantum dot (20) in an optical structure (30) selected from a photonic crystal structure (31) and a plasmonic structure (32), wherein the optical structure (30) is configured to increase the photon density of states in the light converter (100) resonant with the first frequency for reducing saturation quenching, and wherein the quantum dot (20) has a quantum efficiency of at least 80%.
Abstract translation:本发明提供一种照明装置(1),包括:(a)包括光接收面(110)的光转换器(100); 以及(b)固态光源(10),被配置为在所述光接收面(110)处产生具有至少10W / cm 2的光子通量的光源光(11),其中所述光转换器 被配置为将至少部分光源光(11)转换为具有第一频率的光转换器光(101),其中所述光转换器(100)包括在光学结构(30)中选择的半导体量子点(20) 光子晶体结构(31)和等离子体激元结构(32),其中所述光学结构(30)被配置为增加所述光转换器(100)中与所述第一频率共振的状态的光子密度,以减少饱和猝灭,并且其中 量子点(20)具有至少80%的量子效率。
Abstract:
Integrated photonic devices including an optical waveguide patterned with an array of antennas are provided. The small footprint, lightweight, and broadband integrated photonic devices provided can be configured into waveguide mode converters, polarization rotators, perfect absorbers, photodetectors, optical power diodes, nonlinear optical elements, heat-assisted magnetic recorders, optical isolators, and optical circulators.
Abstract:
A plasmonic device has a transparent conducting oxide (TCO) waveguide and a tunable voltage applied across the TCO and a metal layer for modulating an input optical signal. The plasmonic device comprises a substrate, the metal layer on the substrate and having a grooved channel, a dielectric layer on the metal layer and in the grooved channel, and the transparent conducting oxide (TCO) on the dielectric layer and in the grooved channel.
Abstract:
A planar optical device, comprised of sets of nanometer-scale holes milled into a thin metal or ceramic film of subwavelength thickness serves to form arbitrary waveform of light. The holes form a pattern, preferrably rings, of various sizes in order to achieve a given phase front of light due to photonic effect. When designed as a lens, the device focuses incident light into a tight focal spot. In symmetric design, the focusing property of the device does not depend on the incident polarization angle. The lens can be manufactured based on high-throughput fabrication methods and easily integrated with a chip or placed at the end of an optical fiber.