Abstract:
Embodiments may take the form of a system having a user input device and a first sensor coupled to the user input device. The first sensor is configured to sense touch on a surface of the user input device. The system may also include a second sensor in communication with the surface of the user device configured to sense wetting of a user's fingerprint on the surface. The system has a processor coupled to the first and second sensors and configured to estimate an amount of force applied by the user's fingerprint based at least in part upon the sensed wetting of the user's fingerprint.
Abstract:
An input/output device for a computing device including one or more touch sensors and one or more force sensors. The touch sensors sense data including one or more locations at which a contact or near-contact occurs. The force sensor sense data including a measure of an amount of force presented at the one or more locations at which a contact occurs. The touch sensors and the force sensors responsive to signals occurring in response to whether the signals are in response to contact or in response to an amount of force. The input/output device also includes one or more circuits coupled to the touch sensors and to the force sensors, and capable of combining information from both sensors.
Abstract:
An electronic device can include a touch device that includes one or more force sensors. The one or more force sensors can include one or more force sensing elements. The one or more force sensing elements can be adapted to provide one or more signals with respect to a force applied to the touch device. One or more processors can be adapted to determine a corrected signal for at least one of the one or more signals when a force is applied at one or more locations that are not directly aligned with at least one force sensing element.
Abstract:
An apparatus includes one or more fingerprint image sensors capable of providing fingerprint image information from the finger of a user, and one or more separately disposed orientation sensors, capable of determining one or more orientations of the finger. One or more circuits are coupled to the one or more fingerprint image sensors and the one or more orientation sensors, configured for combining information from the one or more fingerprint image sensors and the one or more fingerprint orientation sensors.
Abstract:
An apparatus comprises a fingerprint sensor having a set of capacitive elements configured for capacitively coupling to a user fingerprint. The fingerprint sensor may be disposed under a control button or display element of an electronic device, for example one or more of a control button and a display component. A responsive element is responsive to proximity of the user fingerprint, for example one or both of a first circuit responsive to motion of the control button, and a second circuit responsive to a coupling between the fingerprint and a surface of the display element. The fingerprint sensor is disposed closer to the fingerprint than the responsive element. The control button or display component may include an anisotropic dielectric material, for example sapphire.
Abstract:
An electronic device including a processor, a display screen in communication with the processor, a track pad in communication with the processor including a movable surface that is selectively movable in at least one direction to provide feedback to a user, and a feedback system in communication with the processor including a feedback sensor. The feedback sensor determines a movement characteristic of the movable surface and the processor selectively adjusts at least one setting of the track pad based on the movement characteristic.
Abstract:
Various sapphire and laminate structures are discussed herein. One embodiment may take the form of a sapphire structure having a first sapphire sheet with a first sapphire plane type forming the major surface and a second sapphire sheet having a second different sapphire plane type forming the major surface. The first and second sapphire sheets are fused together to form the sapphire structure.
Abstract:
A method for creating a flexible portion or bending portion within a rigid structure. The method can also be used for creating a flexible structure from a rigid material. The method includes providing a substantially rigid material, such as, but not limited to, metals, alloys, hard plastics, and the like, and selectively removing portions of the rigid material defining a geometric pattern in the rigid material. A bending radius of the flexible portion is defined by the geometric pattern. The rigid structure may be used to create an enclosure, a cover for an electronic device, one or more hinges, or the like.
Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have multiple layers of material such as a color filter layer and a thin-film transistor layer. An opaque masking layer may be formed on a display layer such as the color filter layer. In an inactive portion of the display, the opaque masking layer may form a rectangular ring that serves as a border region surrounding a rectangular active portion of the display. In the active portion of the display, the opaque masking layer may be patterned to from an opaque matrix that separates color filter elements in an array of color filter elements. The opaque masking layer and color filter elements may be formed from polymers such as photoresist. The opaque masking layer may include a black pigment such as carbon black. Color filter elements and opaque masking material may include multiple sublayers.
Abstract:
Each knuckle is molded in and/or around a coupling structure that is either welded to or is an integral part of the section. The coupling structure can be a bracket that is welded to an inner surface of a section, and the bracket is constructed to have a cross- section that minimizes capacitance. In one embodiment, a first bracket can be welded to a first conductive section, and a second bracket can be welded to a second conductive section. A knuckle constructed from an insulating material that is overmolded within and around the first and second brackets such that the first and second conductive sections are coupled together. The first and second conductive sections and their respective brackets are spaced a predetermined distanced apart, thereby ensuring the conductive sections are electrically isolated.