Abstract:
Die Erfindung schafft ein elektrisches Energiespeichermodul (100), aufweisend: wenigstens einen Speicherzellstapel (10), mit: mehreren Energiespeicherzellen (1), welche jeweils ein Zellgehäuse (1a) mit jeweils zwei Polanschlüssen (1b,1c) aufweisen, wobei die Energiespeicherzellen (1) in dem Speicherzellstapel (10) seriell derart angeordnet sind, dass jeweils ein erster Polanschluss (1b) und ein zweiter Polanschluss (1c) mit unterschiedlichen Polaritäten zweier benachbarter Energiespeicherzellen (1) miteinander mittels flächig ausgebildeter Zellverbindungselemente (4) galvanisch verbunden sind, wobei die Zellgehäuse (1a) aller Energiespeicherzellen (1) galvanisch miteinander verbunden sind, wobei der erste Polanschluss (1b) einer an einem ersten Ende des Speicherzellstapels (10) angeordneten Energiespeicherzelle (1) galvanisch mit dem Zellgehäuse (1a) verbunden ist, und wobei der zweite Polanschluss (1c) einer an einem zweiten Ende des Speicherzellstapels (10) angeordneten Energiespeicherzelle (1) und die Zellgehäuse (1a) jeweils einen flächig ausgebildeten Rückleiter (5) aufweisen.
Abstract:
In one embodiment of the invention, a method of forming an energy storage device is described in which a porous structure of an electrically conductive substrate is measured in-situ while being electrochemically etched in an electrochemical etching bath until a predetermined value is obtained, at which point the electrically conductive substrate may be removed from the electrochemical etching bath. In another embodiment, a method of forming an energy storage device is described in which an electrically conductive porous structure is measured to determine the energy storage capacity of the electrically conductive porous structure. The energy storage capacity of the electrically conductive porous structure is then reduced until a predetermined energy storage capacity value is obtained.
Abstract:
An electrochemical storage device including a plurality of electrochemical cells connected electrically in series. Each cell includes an anode electrode, a cathode electrode and an aqueous electrolyte. The charge storage capacity of the anode electrode is less than the charge storage capacity of the cathode.
Abstract:
An electrochemical device including a housing and a stack of electrochemical cells in the housing. Each electrochemical cell includes an anode electrode, a cathode electrode, a separator located between the anode electrode and the cathode electrode and an electrolyte. The electrochemical device also includes a current collector located between adjacent electrochemical cells, an anode bus operatively connected to the anodes of the electrochemical cells in the stack and a cathode bus operatively connected to the cathodes of the electrochemical cells in the stack. The housing, the anode electrode, the cathode electrode, the separator, the anode bus and the cathode bus are non-metallic.
Abstract:
A capacitor (100) includes a plurality of electrode substrates (102), with each of the plurality of electrode substrates (102) having a coated portion (102a) and an uncoated portion (102b). The coated portion (102a) is coated with a coating material (104) that includes a high surface area activated carbon material (106), a water soluble binder (108) selected from the group consisting of: poly vinyl alcohol, poly acrylic acid, polymethacrylic acid, polyethylene oxide, polyacrylamide, poly-N- isopropylearylamide, poly-N,N-dimethylacrylamide, polyethyleneimine, polyoxyethylene, polyvinylsulfonic acid, poly (2 -methoxyethoxyethoxyethylene), butadiene - acrylonitrile, and combinations thereof, and a water soluble thickener (110). A separator (120) is inserted between adjacent substrates of the plurality of electrode substrates (102). The capacitor (100) further includes an electrolyte (142). A method of manufacturing the capacitor (100) is also provided.
Abstract:
Energy storage devices that include a solid multilayer electrolyte are provided. In certain embodiments, the energy storage devices disclosed herein can exhibit behavior analogous to an electrochemical battery at lower voltages, but can transition to electrostatic capacitor behavior as voltages rise. The energy storage devices, methods, and systems disclosed herein can preferably be advantageous by providing a large total energy storage capacity.