Abstract:
A fuel cell system has a fuel cell (1) performing power generation as a result of reactions in a supplied gases, a humidifying device (34) for humidifying the at least one supplied gas by using water from water tank (31), and a coolant temperature regulation device (21, 22, 25, 26, 27, 28, 51) for regulating the temperature of the coolant flowing within the fuel cell (1) in order to control the temperature of the fuel cell (1), and a defrosting device (61). The defrosting device (61) melts ice in the water tank (31) during a startup operation of the fuel cell system (1) by applying heat contained in the coolant to the ice. which Here, the coolant has an increased temperature as a result of heat exchange with waste heat produced during power generation inside the fuel cell (1).
Abstract:
A device used for humidifying the flow of a gas which is to be humidified, e.g., fed to a fuel cell system. A moist gas, e.g. a moist waste gas from said fuel cell system is used for said humidification, whereby said gas flows together with the gas flow in a humidifying device. The two gas flows are separated from each other by a membrane in the humidifying device. The membrane is exclusively permeable for water vapour. According to the invention, at least one bypass line is provided. At least one of the gas flows can be partially guided via said bypass line around the region of the membrane in the humidifying device. The saturation point can thus be freely adjusted in an advantageous manner in the gas which is to be humidified.
Abstract:
A solid oxide regenerative fuel cell system is used to supply power in a fuel cell mode and to generate a hydrocarbon fuel in an electrolysis mode. The system includes a solid oxide regenerative fuel cell and a reactor adapted to convert an exhaust emitted from the solid oxide regenerative fuel cell to a hydrocarbon gas when the solid oxide regenerative fuel cell operates in an electrolysis mode.
Abstract:
The invention is a reversible fuel cell power plant (10). A reactant switch-over assembly (48) is secured between a reducing fluid fuel source (30), an oxygen containing oxidant source (24), and first and second flow fields (20) (22) of a fuel cell (12). The switch-over assembly (48) first directs a reducing fluid fuel stream to flow into the first flow field (20) while it simultaneously directs the oxygen containing oxidant stream to flow into the second flow field (22). Then, after a first half of a useful life span of the fuel cell (12) but before a final one quarter of the useful life span, the switch-over assembly (48) directs the reducing fluid fuel stream to flow into the second flow field (22) while it simultaneously directs the oxygen containing oxidant stream to flow into the first flow field (20).
Abstract:
The invention is a reversible fuel cell power plant (10). A reactant switch-over assembly (48) is secured between a reducing fluid fuel source (30), an oxygen containing oxidant source (24), and first and second flow fields (20) (22) of a fuel cell (12). The switch-over assembly (48) first directs a reducing fluid fuel stream to flow into the first flow field (20) while it simultaneously directs the oxygen containing oxidant stream to flow into the second flow field (22). Then, after a first half of a useful life span of the fuel cell (12) but before a final one quarter of the useful life span, the switch-over assembly (48) directs the reducing fluid fuel stream to flow into the second flow field (22) while it simultaneously directs the oxygen containing oxidant stream to flow into the first flow field (20).
Abstract:
A purge system for fuel cell stack (12) includes a purge valve (70) to regulate exhaust from the fuel cell stack in response control signals from a controller in response to a voltage across a purge cell portion (36) of a fuel cell stack. The purge valve is opened when the voltage across the purge cell portion falls below a defined percentage of a threshold voltage, which is based on the actual voltage of one or more cells in the stack. The threshold voltage can be equal to an average cell voltage of some or all of the fuel cells of the fuel cell stack. The purge may include on or more successive openings of the purge valve of controlled purge durations. The purge duration may be adjusted depending on the instantaneous current flow through the stack.
Abstract:
Die Erfindung beschäftigt sich mit dem Problem der Befeuchtung einer PEM bzw. einer MEA. Es wird eine Elektrodenplatte für eine PEM-Brennstoffzelle vorgeschlagen, die wenigstens einen auf ihr integrierten Bereich für die Befeuchtung eines Reaktandenstroms aufweist. Ferner wird eine PEM-Brennstoffzelle vorgeschlagen, die diese Elektrodenplatte aufweist, sowie ein PEM-Brennstoffzellenstapel, der diese PEM-Brennstoffzellen aufweist. Außerdem wird ein Verfahren zur Befeuchtung von Reaktandenströmen für PEM-Brennstoffzellen vorgeschlagen, bei dem Reaktanden nach Eintritt in die Brennstoffzelle und vor Eintritt in einen Verteilungsbereich in einem Befeuchtungsbereich befeuchtet werden. Ferner wird ein Verfahren zum Befeuchten einer PEM einer PEM-Brennstoffzelle vorgeschlagen, sowie ein Verfahren zum Betreiben von PEM-Brennstoffzellen. Die Erfindung ermöglicht v.a. die Durchführung der Befeuchtung auf einfache und wirkungsvolle Weise in einer PEM-Brennstoffzelle. Dadurch können beispielsweise Volumen und Gewicht reduziert werden.
Abstract translation:本发明涉及一种PEM或MEA的加湿的问题。 它提出了一种用于具有其为反应物流的加湿积分面积中的至少一个PEM燃料电池的电极板。 此外,PEM燃料电池,提出了一种包括这种电极板,以及具有这些PEM燃料电池的质子交换膜燃料电池堆。 另外,提出了一种用于PEM燃料电池的反应物流的加湿的方法,以在反应物进入所述燃料电池和进入分配区域在加湿前后润湿。 此外,用于加湿一个PEM质子交换膜燃料电池的方法,提出了并供操作PEM燃料电池的方法。 本发明使得能够V. A. 在PEM燃料电池中执行以简单和有效的方式加湿。 本例中,体积和重量可以减少。
Abstract:
A fuel cell system including an anode chamber having a fuel mixture comprising methanol and water, and a diffusion layer, a fuel source in fluid communication with the anode chamber via a conduit, a cathode chamber having a cathode and a diffusion layer, wherein the diffusion layer is in fluid communication with an oxidizer, and a proton conducting, electrical non-conducting membrane electrolyte separating the chambers and positioned substantially adjacent to said diffusion layers. The membrane includes a catalyst exposed to each of the chambers for initiating chemical reactions to produce electricity. The system also includes a first valve for automatically controlling a flow of a fluid to/from the fuel cell, where the first valve includes a shape memory material.
Abstract:
A fuel cell having humidifying means (2) for directly humidifying a polymer electrolyte film (12) serving as an ion conductor. As the humidifying means (2), means having a water−retaining section (21) made of a water−absorptive material and adapted for directly humidifying the polymer electrolyte film (12) by using the capillarity is used or means having a humidifying water passage (28) made of a hydrophilic material, connected to the water−retaining section (21), and disposed in the polymer electrolyte film so as to humidify the polymer electrolyte film (12) faster and more homogeneously are used. With such a structure, a fuel cell for directly humidifying the ion conductor can be provided.