Abstract:
Provided herein is a method for cleaning a process chamber for semiconductor and/or flat panel display manufacturing. This method comprises the steps of converting a non-cleaning feed gas to a cleaning gas in a remote location and then delivering the cleaning gas to the process chamber for cleaning. Such method may further comprise the step of activating the cleaning gas outside the chamber before the delivery of the gas to the chamber. Also provided is a method of eliminating non-cleaning feed gas from the cleaning gas by cryocondensation.
Abstract:
A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
Abstract:
A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity
Abstract:
A method and apparatus for fabricating a solar cell and forming metal contact is disclosed. Solar cell contact and wiring is formed by depositing a thin film stack of a first metal material and a second metal material as an initiation layer or seed layer for depositing a bulk metal layer in conjunction with additional sheet processing, photolithography, etching, cleaning, and annealing processes. In one embodiment, the thin film stack for forming metal silicide with reduced contact resistance over the sheet is deposited by sputtering or physical vapor deposition. In another embodiment, the bulk metal layer for forming metal lines and wiring is deposited by sputtering or physical vapor deposition. In an alternative embodiment, electroplating or electroless deposition is used to deposit the bulk metal layer.
Abstract:
In a first aspect, a system is provided for inkjet printing. The system includes (1) at least one apparatus for inkjet printing having (a) a first inkjet print head including a first plurality of nozzles adapted to selectively dispense a first ink; (b) a second inkjet print head including a second plurality of nozzles adapted to selectively dispense a second ink; and (c) a set including the first and second print heads arranged such that the set is adapted to dispense the first and second inks into respective adjacent color wells of a display pixel on a substrate during a printing pass; and (2) a stage adapted'to support the substrate and transport the substrate below the at least one apparatus for inkjet printing during the printing pass. Numerous other aspects are provided.
Abstract:
A method and apparatus for depositing a dielectric material at a rate of at least 4000 Angstroms per minute on a large area substrate that has a surface area of at least about 0.35 square meters is provided. In one embodiment, the dielectric material is silicon oxide. Also provided is a vaporizer comprising a plurality of grooves.
Abstract:
Embodiments of a gas distribution plate for distributing gas in a processing chamber are provided. In one embodiment, a gas distribution plate includes a diffuser plate having a plurality of gas passages passing between an upstream side and a downstream side of the diffuser plate. At least one of the gas passages includes a first hole and a second hole coupled by an orifice hole. The first hole extends from the upstream side of the diffuser plate while the second hole extends from the downstream side. The orifice hole has a diameter less than the respective diameters of the first and second holes.
Abstract:
Methods and apparatus are provided in which a substrate is aligned so that a longitudinal dimension of a plurality of sub-pixel wells formed on the substrate are substantially perpendicular to a printing direction. Ink is deposited in a subset of the sub-pixel wells via nozzles of a print head wherein each of a plurality of the nozzles deposits a plurality of ink drops in each of the subset of the sub-pixel wells. Numerous other aspects are disclosed.
Abstract:
For use in a color filter inkjet printing system (200) that may be part of a flat panel display manufacturing system, methods and apparatus for adjusting a pixel fill profile are provided. The methods include application of, and the apparatus are adapted to apply, pressurized gas (219) to at least one ink-filled pixel well on a substrate (226) having a plurality of pixel wells (402).
Abstract:
A gas inlet manifold for a plasma chamber having a perforated gas distribution plate suspended by a side wall comprising one or more sheets. The sheets preferably provide flexibility to alleviate stress in the gas distribution plate due to thermal expansion and contraction. In another aspect, the side wall provides thermal isolation between the gas distribution plate and other components of the chamber.