Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing late fusing of processor features using a non-volatile memory. For instance, there is disclosed in accordance with one embodiment a functional semiconductor package, including: a processor core configurable via a plurality of configuration registers; a non-volatile storage, in which a first portion of the non-volatile storage includes permanently lockable storage that once written cannot be overwritten or modified, and in which a second portion of the non-volatile storage includes the plurality of configuration registers; a first write interface to the non-volatile storage, in which the permanently lockable storage of the non-volatile storage is wirelessly writable externally from the functional semiconductor package via the first write interface; a second write interface to the non-volatile storage through which the plurality of configuration registers are writable; configuration data for the processor core written wirelessly into the permanently lockable storage of the non-volatile storage; and in which the configuration data is distributed into the plurality of configuration registers via the second write interface at every boot of the functional semiconductor package. Other related embodiments are disclosed.
Abstract:
Methods and apparatus relating to priority based intelligent platform passive thermal management are described. In one embodiment, the power consumption limit of one or more components of a platform is modified based on one or more thermal relationships between one or more power consuming components of the platform and one or more heat generating components of the platform. Furthermore, a first relationship of the one or more thermal relationships indicates an influence priority of a source component of the platform on a target component of the platform. Other embodiments are also claimed and disclosed.
Abstract:
Methods and apparatus relating to table driven multiple passive trip, platform passive thermal management are described. In one embodiment, the power consumption limit of one or more components of a platform is modified based on one or more thermal relationships between one or more power consuming components of the platform and one or more heat generating components of the platform. Furthermore, a first relationship of the one or more thermal relationships indicates a mapping between a plurality of temperature thresholds and a corresponding plurality of performance limits. Other embodiments are also claimed and disclosed.
Abstract:
Methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to implement license management solutions for software defined silicon (SDSi) products are disclosed. Example license management solutions disclosed herein include, but are not limited to, virtual resource migration using SDSi, resource configuration management using SDSi, hardware self-configuration using SDSi, reduced footprint agents using SDSi, performing SDSi usage evaluation and corresponding license transfer responsive to detected and/or predicted failures, transferring node locked SDSi licenses, transfer of SDSi licenses without a trusted license server, community license generation, expirable SDSi licenses via a reliable clock, non-node locked licenses via blockchain, and activating hardware features with a pre-generated hardware license.
Abstract:
Methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to implement software defined silicon feature configuration pay-as-you-go licensing are disclosed. A disclosed silicon semiconductor device includes a first counter that increments a first count when a timer expires and, responsive to expiration of the timer, a feature configuration sampler to sample a state of a configuration of a feature of the silicon semiconductor device. In addition, the silicon semiconductor device includes a second counter that increments a second count when the sampled state of the configuration of the feature indicates the feature is active. A feature up-time tracker is also included outputs a value representative of an amount of time the configuration has been active, where the amount of time is based on the first count and the second count.
Abstract:
An apparatus system is provided which comprises: a first component and a second component; a first circuitry to assign the first component to a first group of components, and to assign the second component to a second group of components; and a second circuitry to assign a first maximum frequency limit to the first group of components, and to assign a second maximum frequency limit to the second group of components, wherein the first component and the second component are to respectively operate in accordance with the first maximum frequency limit and the second maximum frequency limit.
Abstract:
In one example a electronic device comprises at least one heat generating component, a thermal management module comprising logic, at least partly including hardware logic, to receive a signal from the sensor indicating that the electronic device is coupled to an external device, receive thermal dissipation capability data from the external device, and update a thermal management platform for the electronic device to accommodate the thermal dissipation capability data received from the external device. Other examples may be described.
Abstract:
Techniques for adaptive demand/response power management. Power consumption and battery charge level of a platform having a battery with a smart power module are monitored. Information indicating the power consumption and battery charge level for the platform is provided to a remote demand/response management device. The remote demand/response management device and the smart power module receive a command to modify one or more power consumption characteristics of the platform. The one or more power consumption characteristics of the platform are to be changed in response to the command.
Abstract:
A technique to change a thermal design power (TDP) value. In one embodiment, one or more environmental or user-driven changes may cause a processor's TDP value to be changed. Furthermore, in some embodiments a change in TDP may alter a turbo mode target frequency.
Abstract:
Systems and methods of managing platform power consumption may involve determining a power consumption level of a platform based on at least in part a current supplied by an AC adaptor. A power limit of an integrated circuit in the platform can be determined based on at least in part the power consumption level of the platform, wherein the power level may be applied to the integrated circuit.