Abstract:
A master device is provided which is coupled to a shared single line interrupt request (IRQ) bus and a control data bus. The master device group slave devices coupled to the shared single line IRQ bus into one or more groups, where each group is associated with a different IRQ signal. The master device then monitors the IRQ bus to ascertain when an IRQ signal is asserted by at least one slave device. The master device then identifies a group to with which the IRQ signal is associated. The slave devices for the identified group are then scanned or queried by the master device to ascertain which slave device asserted the IRQ signal on the IRQ bus. Each group uses a distinguishable IRQ signal to allow the master device to ascertain which group to query or scan.
Abstract:
Systems and methods for multi-phase signaling are described herein. In one embodiment, a method for receiving data comprises receiving a sequence of symbols from a plurality of conductors (510), and generating a clock signal by detecting transitions in the received sequence of symbols (520). The method also comprises delaying the received sequence of symbols (522), and capturing one or more symbols in the delayed sequence of symbols using the clock signal, wherein a previous symbol in the delayed sequence of symbols is captured using a clock pulse in the clock signal generated based on a detected transition to a current symbol in the received sequence of symbols (530).
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Information is transmitted in N-phase polarity encoded symbols. A clock recovery circuit may be calibrated based on state transitions in a preamble transmitted on two or more connectors. A calibration method is described. The method includes detecting a plurality of transitions in a preamble of a multiphase signal and calibrating a delay element to provide a delay that matches a clocking period of the multiphase signal. Each transition may be detected by only one of a plurality of detectors. The delay element may be calibrated based on time intervals between detections of successive ones of the plurality of transitions.
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Data is selectively transmitted as N-phase polarity encoded symbols or as packets on differentially driven connectors. A data transfer method comprises encoding data and control signals in a sequence of symbols to be transmitted on a plurality of connectors, and transmitting the sequence of symbols on the plurality of connectors. Each symbol may be transmitted using a combination of a phase state of a first pair of connectors, a polarity of a second pair of connectors, and a selection of at least one undriven connector. Transmission of each symbol in the sequence of symbols may cause a change of state for at least one of the plurality of connectors.
Abstract:
Methods and apparatus for providing power efficient time management for mobile media. In an aspect, a method is provided that operates to provide time management for mobile media that is distributed over a network. The method includes receiving the mobile media comprising source video frames that are associated with a source time reference (402) , and capturing a portion of the source video frames (404) . The method also includes re-labeling the portion of the source video frames based on a system time reference (406) to produce synchronized video frames, wherein the network provides communications based on the system time reference, and assembling a transmission frame that comprises the synchronized video frames (410) .
Abstract:
Pulse amplitude modulation (PAM) encoding for a communication bus is disclosed. In particular, various two-wire communication buses may encode bits using three-level PAM (PAM-3) or five-level PAM (PAM-5) to increase bit transmission without requiring increases to clock frequencies or adding additional pins. Avoiding increases in clock frequencies helps reduce the risk of electromagnetic interference (EMI), and avoiding use of extra pins avoids cost increases for integrated circuits (ICs).
Abstract:
Methods, apparatus, and systems for data communication over a multi-wire, multi-phase interface are disclosed. A method includes recovering a first clock signal from transitions between pairs of symbols representative of successive signaling states of a 3-wire interface, where a pulse in the first clock signal is generated in response to an earliest-occurring transition between the first and second symbols in one of three difference signals representative of differences in state between two wires, determining direction of voltage change of a first transition detected on a first difference signal, providing a value selected based on the direction of voltage change as value of the first difference signal in the second symbol, and providing a value of a second difference signal captured during the first symbol as the value of the second difference signal when the second difference signal does not transition between the first symbol and the second symbol.
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within electronic equipment. The apparatus may determine whether a run-length violation will occur or is likely to occur if a first sequence of symbols provided by a mapper of an M-Wire N-Phase encoder is transmitted on a plurality of wires. A second sequence of symbols may be substituted for the first sequence of symbols. The second sequence of symbols may comprise a surplus sequence of symbols that is not used for mapping data in the mapper.
Abstract:
System, methods and apparatus are described that offer improved performance of a serial bus used for Inter-Integrated Circuit (I2C) and/or camera control interface (CCI) operations. CCI extension (CCIe) devices are described. CCIe devices may be configured as a bus master or as a slave. In one method, a CCIe transmitter may generate a transition number from a set of bits, convert the transition number into a sequence of symbols, and transmit the sequence of symbols in the signaling state of a two-wire serial bus. Timing information may be encoded in the transitions between symbols of consecutive pairs of symbols in the sequence of symbols. For example, each transition may cause a change in the signaling state of at least one wire of the two-wire serial bus. A CCIe receiver may derive a receive clock from the transitions in order to receive and decode the sequence of symbols.
Abstract:
System, methods and apparatus are described that facilitate transmission of data over a multi-wire data communications link, particularly between two devices within an electronic apparatus. A sequence of data bits is converted into M transition numbers, which are then converted into a sequence of symbols. The sequence of symbols is transmitted received over N wires. A clock signal may be effectively embedded in the transmission of the sequence of symbols. Each of the sequence of symbols may be selected based on a corresponding one of the M transition numbers and a value of a preceding one of the sequence of symbols.