Abstract:
The invention relates to a base actuator (1) and an additional actuator (2) which securely open and close a useful circuit (4). The base actuator (1) can be activated/deactivated by supplying/not supplying electric energy during normal functioning. A secure control unit (3) monitors the base actuator (1) with regard to electric supply and thus evaluates a desired activation state of the base actuator (1). A real activation state of the base actuator (1) is supplied to the control unit (3) that deactivates the additional actuator (2) when the activation states of the base actuator (1) deviate from each other.
Abstract:
The invention relates to an actuator unit (A) which is provided with at least two contactors (1, 2) and a secure control unit (3). A three-phase circuit (4) with a secondary voltage of at least 380 V is opened as soon as at least one of the contactors (1, 2) is deactivated. The control unit (3) opens the three-phase circuit (4) by controlling at least one of the contactors (1, 2) when an emergency stop signal is transmitted to the control unit (3) via a secure disconnecting channel (5). The contactors (1, 2) and the control unit (3) are combined to an installation module (7) which can be mounted and dismounted as a unit.
Abstract:
A first and a second line (L1, L2) conduct the input direct voltage (Ue) to the load. A fuse (S) is connected in series in the first line. The switching contact (K11) of a first relay (K1) is also connected in series in the first line and is opened during a disconnecting operation. The switching contact (K21) of a second relay (K2) is connected in parallel between the first and second line after the first relay and is closed during a disconnecting operation, after the first relay has been opened. The inventive device is very fault-tolerant, even with usual commercial relays.
Abstract:
For providing a very simple and reliable monitoring of the functionality of contacts together with a high flexibility of selection of the contacts a method for monitoring the functionality of redundantly interconnected contacts is provided, preferably within a load current circuit, wherein said n contacts, n = 2, provide an electrical connection between a power supply and a load, wherein said n contacts are switchable by a controller and wherein each of said n contacts is designed for providing the electrical connection between the power supply and the load all alone. The method is characterized in that the controller switches on said n contacts during n subsequent activations according to a defined schedule according to which at the first of said n subsequent activations one of said n contacts is switched on first and the remaining n-1 contacts are switched on afterwards, so that a verification regarding the functionality of said one of said n contacts is possible, and according to which at each of the n-1 remaining subsequent activations a further one of said n contacts is switched on first with switching on of the remaining n-1 contacts afterwards, so that after said n subsequent activations each of said n contacts has once been switched on first and a verification regarding the functionality of each of said n contacts is possible. Further, a corresponding method for subsequent deactivations and corresponding apparatuses are provided.
Abstract:
An electrical storage system includes a first relay, a second relay, a drive circuit configured to drive the first relay and the second relay, and a controller configured to control operation of the drive circuit. The first relay is provided in a positive electrode line that connects a positive electrode terminal of an electrical storage device to a load. The second relay is provided in a negative electrode line that connects a negative electrode terminal of the electrical storage device to the load. The first relay and the second relay are mechanically interlocked with each other. The drive circuit is configured to operate the first relay and the second relay. The drive circuit includes a coil, a plurality of switch elements, at least one sensor and a controller. The coil is configured to generate electromagnetic force upon reception of electric power supplied from a power supply. The first relay and the second relay are configured to be switched from a non-energized state to an energized state by the electromagnetic force. The plurality of switch elements are provided in a current path between the power supply and the coil and connected in series with each other. The at least one sensor is configured to change an output signal in response to an energized state or non-energized state of each of the plurality of switch elements. The controller is configured to control operation of the drive circuit. The controller is configured to output a control signal for setting one of the switch elements to the non-energized state and determine whether the one of the switch elements is in the energized state on the basis of the output signal of the at least one sensor.
Abstract:
Eine Sicherheitsschalteinrichtung (18a, 18b) besitzt einen Steuerteil zum Verarbeiten eines Eingangssignals und zumindest ein Schaltelement mit zumindest einem aktiven und einem inaktiven Schaltzustand. Der Steuerteil ist dazu ausgebildet, das Schaltelement anzusteuern, um ein vom Eingangssignal abhängiges Ausgangssignal zu erzeugen. Außerdem besitzt die Sicherheits-schalteinrichtung eine Diagnosefunktionalität zum Erkennen eines Funktionsfehlers, wobei der Steuerteil dazu ausgebildet ist, das Schaltelement in den inaktiven Zustand zu steuern, wenn ein Funktionsfehler erkannt ist. Gemäß einem Aspekt der Erfindung ist der Steuerteil ferner dazu ausgebildet, mit Hilfe des Schaltelements ein Datentelegramm (96) zu erzeugen, das von dem erkannten Funktionsfehler abhängt.
Abstract:
Die Reaktionszeit sicherheitskritischer elektrischer Komponenten bei einer Sicherheitsabschaltung soll verbessert werden. Hierzu ist vorgesehen, dass die Ausgänge zweier Controller (C1, C2) zur Ansteuerung in Reihe verbundener Schalter (S1, S2) einer Schalteinrichtung für die zu schaltende elektrische Komponente beziehungsweise Maschine UND-verknüpft werden. Damit entfällt für die Sicherheitsabschaltung die Übermittlungszeit von einem Controller zum anderen, wenn der eine Controller (C1) das Abschaltsignal vom Eingang (X) aufnehmen und der andere Controller (C2) für das gemeinsame Schalten der beiden Schalter (S1, S2) zuständig wäre. Dementsprechend erhöht sich die mittlere Reaktionszeit bei der Sicherheitsabschaltung.
Abstract:
Die Erfindung betrifft ein Sicherheitsschaltmodul zum sicheren Abschalten einer elektrischen Last (43), mit einer ersten und einer zweiten Schaltsteuereinrichtung (20A, 20B), einem ersten und einem in Reihe dazu angeordneten zweiten Schaltelement (24.1, 24.2), die einen ersten Strompfad (26.1) zur Versorgung der Last bilden, wobei das erste Schaltelement (24.1) von der ersten Schaltsteuereinrichtung (20A) und das zweite Schaltelement (24.2) von der zweiten Schaltsteuereinrichtung (20B) steuerbar ist, und mit einer Auswerte- und Steuereinrichtung (12) zur Prüfung des Abschaltvermögens von zumindest einem Schaltelement. Es sind ein drittes und ein viertes Schaltelement (24.3, 24.4) vorgesehen, die in Reihe zueinander und parallel zu der Reihenschaltung aus erstem und zweitem Schaltelement (24.1, 24.2) angeordnet sind und einen zweiten Strompfad (26.2) bilden, wobei das dritte Schaltelement (24.3) von der ersten Schaltsteuereinrichtung (20A) und das vierte Schaltelement (24.4) von der zweiten Schaltsteuereinrichtung (20B) steuerbar ist. Ferner führt die Auswerte- und Steuereinrichtung (12) die Prüfung der Schaltelemente (24) in abwechselnd einem der beiden Strompfade (26.1, 26.2) durch, so daß der andere der beiden Strompfade (26.2, 26.1) die Last (43) versorgt.
Abstract:
The invention relates to an actuator unit that is provided with a base actuator (1) and an additional actuator (2). A useful circuit (4) can be opened and closed by means of said actuators. The base actuator (1) can be activated by supplying electric energy during normal functioning and can be deactivated by not supplying electric energy. The additional actuator (2) can be deactivated by supplying electric energy and can be activated manually. A control unit (3) deactivates the additional actuator (2) only when a real activation state of the base actuator (1) deviates from a desired activation state of the base actuator (1).
Abstract:
A contactor safety combination is proposed comprising two contactors (1, 3) and a mechanical locking component (5) coupled between the contactors. The latter can be standard commercial contactors of any size to allow switching of even high-power consumer devices. This solution also eliminates the need for a third contact traditionally required to effect locking.