Abstract:
A headend transmitter that transmits 1024 QAM including a 256 QAM modulator which has been modified to have more aggressive forward error correction processing. The 256 QAM modulator outputs 256 QAM points to a summer. Another data modulator receives additional data to be transmitted in a separate, substantially less complex constellation. This modulator processes the additional data to do forward error correction thereon and then maps the encoded data into a less complex constellation such as QPSK, 16 QAM etc. The additional data constellation points are then amplified in a variable gain amplifier and fed to a summer where each additional data point is added by vector summation to one 256 QAM point. The output 1024 QAM point is filtered and shifted to the desired transmission frequency. Legacy cable modem receivers can still receive the 256 QAM point since the addition of the new data just appears to be noise which they can overcome using the parity bits encoded in the transmitted symbols. 1024 QAM cable modem receivers receive both the 256 QAM points and the new data points and output both.
Abstract:
A circuit monitors and resets a co-processor. The circuit includes a hang detector module for detecting a hang in co-processor. The circuit also includes a selective processor reset module for resetting the co-processor without resetting a processor in response to detecting a hang in the co-processor.
Abstract:
A method and apparatus for performing multisampling-based antialiasing in a system that includes first and second graphics processing unit (GPUs) that reduces the amount of data transferred between the GPUs and improves the efficiency with which such data is transferred. The first GPU renders a first version of a frame using a first multisarnpling pattern and the second GPU renders a second version of a frame in the second GPU using a second multisampling pattern. The second GPU identifies non-edge pixels in the second version of the frame. The pixels in the first version of the frame are then combined with only those pixels in the second version of the frame that have not been identified as non-edge ixels to generate a combined frame.
Abstract:
A demodulated multimedia signal is generated based on a captured handheld multimedia signal or a captured terrestrial multimedia signal where the handheld multimedia signal is formatted for reproduction on a handheld device and the terrestrial multimedia signal is formatted for reproduction on a computer system. The demodulated multimedia signal or a decoded multimedia signal (based on the demodulated multimedia signal) is transferred to a computer system for visual and/or audible reproduction on a computer system or for transmission to another computer system. The video information associated with the transferred signal is scaled by the computer system prior to display to match the display characteristics and capabilities of the computer system. The transferred signal may correspond to multiple channels of multimedia signals thereby enabling the display of multiple multimedia signals at the same time.
Abstract:
A method and apparatus for selectively charging a secondary voltage rail includes selectively and partially charging a secondary voltage rail using at least one soft start power gate switch and using an initial power control indicator. The partially charged secondary voltage rail is selectively charged, using at least one main power gate switch, based on the initial power control indicator and a detected voltage on the secondary voltage rail. When the initial power control indicator is in a state representative of an initial power up command and when the detected voltage is greater than or equal to a predetermined voltage level, at least one main power gate switch is closed thereby charging the secondary voltage rail.
Abstract:
A device and method for receiving a compressed video bit stream, and providing decoded video pixels and associated video attributes synchronously to a video processor are disclosed. A compressed video bit stream is received and decoded. The decoded pictures have associated video attributes. A subset of the video attributes is provided to a video processor interconnected to a display. The video attributes are provided synchronously with the picture or pixel data so that the attributes are available to video processor before the associated picture is displayed.
Abstract:
A method and apparatus for use in compiling data for a program shader identifies within data representing control flow information an area operator definition instruction statement located outside the data dependent control flow structures. The method identifies within one of the data dependent branches at least one area operator use instruction statement that has the resultant of the area operator definition instruction statement as an operand. After identifying the area operator use instruction statement, the area operator definition instruction statement is placed within the data dependent branch.
Abstract:
An edge enhancer for enhancing edges within a video image, forms an edge enhancement signal of odd harmonics of a sinusoid representative of the edge content in an incoming signal. The edge enhancement signal may be added to a version of the incoming signal, thereby sharpening the edge in the incoming signal. This allows edges to be enhanced, increasing the image's rise-time without adding overshoot. Sharper edges are thus produced in much the same way as a square wave may be formed of odd harmonics of a sinusoid.
Abstract:
In a digital communications receiver configured to receive, via a communications channel, a received first signal representing a sequence of symbols, each symbol being encoded to be representative of data bits, a method of processing the received signal includes adjusting a magnitude, filtering, and applying cyclic prefix restoration, to the received signal to produce a second signal, converting the second signal from time domain to frequency domain to produce a frequency domain signal, and determining a first quantity of values representing a first portion of the symbols by evaluating a relationship of channel values representing characteristics of the communications channel and a second quantity of values representing a portion of the frequency domain signal, the first quantity being smaller than the second quantity.
Abstract:
Systems and methods are provided for processing data. The systems and methods include multiple processors that each couple to receive commands and data, where the commands and/or data correspond to frames of video that include multiple pixels. An interlink module is coupled to receive processed data corresponding to the frames from each of the processors. The interlink module divides a first frame into multiple frame portions by dividing pixels of the first frame using at least one balance point. The interlink module dynamically determines a position for the balance point that minimizes differences between the workload of the processors during processing of commands and/or data of one or more subsequent frames.