Abstract:
Disclosed are implantable devices that are configured for implantation through tissue or membrane and into an implantation site comprising viscoelastic fluid or non-osseous tissue. In embodiments of the invention, the implantable devices comprise: (a) a nonlinear body member having a direction of extension, a longitudinal axis along the direction of extension, and a proximal portion and a distal portion, wherein at least a portion of the body member deviates from the direction of extension, (b) a retention element at the proximal portion of the body member, the retention element configured to retain the implantable device at the implantation site, the retention element presenting an external profile of no greater than 0.5 mm when the device is implanted in a patient; and (c) a bioactive agent delivery system at the distal portion of the body member, the bioactive agent delivery system comprising one or more bioactive agents. Also disclosed are methods of delivering a bioactive agent to a patient using the devices.
Abstract:
A wound spacer device comprising multiple beads connected by non-absorbable suture material is disclosed. The device can be applied, for example, by a first responder to an injured individual, or can be applied by a trauma treatment facility, such as a Level 2 medical unit. In typical embodiments the device allows for site-specific controlled elution of an antimicrobial agent, such as Tobramycin, including defined elution over a period of time, such as 48 or 72 hours.
Abstract:
The present invention relates to relates to combination degradable and non- degradable matrices and related methods. In an embodiment, the invention includes an active agent delivery matrix including a degradable polymer network, a non-degradable polymer network, the non-degradable polymer network interspersed within the degradable polymer network, and an active agent. In an embodiment, the invention includes an active agent elution control matrix including a degradable polymer; and a non-degradable polymer interspersed with the degradable polymer. In an embodiment, the invention includes a method of making an active agent delivery matrix including mixing a degradable polymer with a first solvent to form a degradable polymer solution; mixing a non-degradable polymer with a second solvent to form a non-degradable polymer solution; and simultaneously depositing the degradable polymer solution and the non-degradable polymer solution onto a substrate.
Abstract:
Compliant coatings for insertable medical articles are provided. In some aspects, the coating includes a diene polymer-containing layer, and a second coated layer that includes another polymer. The coating can be formed by coupling the polymer of the second coated layer to the first coated layer via latent reactive groups, such as photoreactive groups. In other aspects, the insertable medical article has a coating that provides different functional features to different surfaces of the article. The medical article can have a cylindrical shape with an interior surface having a first coating, and an exterior surface with a second coating, wherein the article also includes a plurality of openings.
Abstract:
The present invention relates to devices, articles, coatings, and methods for controlled active agent release and/or for providing a hemocompatible surface. More specifically, the present invention relates to copolymer compositions and devices, articles, and methods regarding the same for controlled active agent release. In an embodiment, the present invention includes a copolymer composition. The copolymer composition can include a copolymer and an active agent. In an embodiment, the copolymer includes an effective portion of a monomelic unit including a polar moiety. The active agent can be polar. The active agent can be charged. The active agent can be non-polar. In an embodiment, the copolymer composition includes a random copolymer. In an embodiment, the random copolymer includes butyl methacrylate-co-acrylamido-methyl-propane sulfonate copolymer, which can provide reduced platelet adhesion.
Abstract:
A coating composition and related method for use in applying a bioactive agent to a surface in a manner that will permit the bioactive agent to be released from the coating in vivo. The composition is particularly well suited for coating the surface of implantable medical device, such as a stent or catheter, in order to permit the device to release bioactive agent to the surrounding tissue over time. The composition includes a plurality of compatible polymers having different properties that can permit them to be combined together to provide an optimal combination of such properties as durability, biocompatibility, and release kinetics.
Abstract:
Laminin-containing coatings for the surfaces of implantable medical devices are disclosed. The coatings promote the formation of vessels in association with the coated surfaces with minimal fibrotic resonse.
Abstract:
Featured is a method for instilling one or more bioactive agents into ocular tissue within an eye of a patient for the treatment of an ocular condition, the method comprising concurrently using at least two of the following bioactive agent delivery methods (A)-(C): (A) implanting a sustained release delivery device comprising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more bioactive agents subretinally; and (C) instilling (e.g., injecting or delivering by ocular iontophoresis) one or more bioactive agents into the vitreous humor of the eye.
Abstract:
The present invention relates to coatings with crystallized active agent(s) and related methods. In an embodiment, the invention includes a method for coating a medical device including selecting a solvent and a polymer, selecting a concentration of an active agent of at least a certain amount of saturation, forming a coating composition having the selected concentration of the active agent, and applying the coating composition to the medical device. In an embodiment, the invention includes an elution control coating disposed on a medical device, the elution control coating including a polymer, and an active agent, wherein the active agent is at least about 80% crystallized within one week of being disposed on the medical device. In an embodiment, the invention includes a method for enhancing the formation of active agent crystals within a coating layer including forming a coating solution and adjusting the concentration of the active agent in the coating solution to reach some percentage of the active agent saturation point. In an embodiment, the invention includes a method of enhancing crystallization of an active agent, the method including forming a coating solution comprising a polymer, an active agent, and a solvent; applying the coating solution to a substrate; and increasing the rate of active agent nucleation within the coating.
Abstract:
The invention relates to methods and apparatus for a medical device having a cylindrical shape like a stent. The invention includes a coating solution supply member having a major axis oriented parallel to a gap between rollers on a coating apparatus on which gap the sent is placed and rotated. The method includes removing a static charge from the small diameter medical device.