Abstract:
A drilling system for drilling a borehole includes a drill string including a bottom hole assembly and a telemetry system coupled together and a communication device coupled to the drillstring configured to transmit sensor data to and receive control data from a control unit located at a surface location through the telemetry system. The system also includes a sensor coupled to the drillstring, the sensor providing the sensor data to the communication device and a downhole safety device coupled to the drill string and in operable communication with the communication device, the downhole safety device configured to actuate after receiving an activation signal initiated by the control unit.
Abstract:
An apparatus to be conveyed into a wellbore is provided, wherein the apparatus includes a housing configured to be conveyed downhole and a drive member located in the housing. The apparatus further includes a drive unit configured to actuate movement of the drive member by selectively coupling to the drive member, wherein the coupling of the device to the drive member is controlled by applying an energy to a selected material in the device.
Abstract:
A method of drilling boreholes is provided. The method, according to one embodiment, may include drilling a borehole, transmitting a signal into the earth formation, receiving signals at least three spaced sensors responsive to the transmitted signals and estimating a path of the borehole using the signals received by the at least three sensors. In another aspect, the method may include drilling a borehole, transmitting signals into the earth formation from at least three spaced transmitters, receiving signals at at least one sensor responsive to the transmitted signals and estimating a path of the borehole using the signals received by the at least one sensor.
Abstract:
An acoustic transducer on a downhole tool sends an acoustic wave through a sensor plate in contact with drilling fluid. Vibrations of the sensor plate are indicative of the impedance of the borehole plate that may be associated with gas influx. A processor analyzes the vibrations and uses an estimated Q of the vibrations to determine gas influx.
Abstract:
A system for communicating between a first location and a second location comprises a jointed tubular string (4) having a first section (21) and a second section (22) connected at a connection joint (4), with the tubular string having a fluid (11) in an internal passage thereof. A first acoustic transducer (23) is mounted in the internal passage of the first section (21) proximate the connection joint (4), and a second acoustic transducer (25) is mounted in the internal passage of the second section (22) proximate the connection joint (4). A signal transmitted from the first location to the second location is transmitted across the connection joint as an acoustic signal in the fluid (11) from the first acoustic transducer (23) to the second acoustic transducer (25).
Abstract:
A formation testing while drilling (FTWP) apparatus and method are provided for obtaining highly accurate pressure measurements in a well borehole using a combination of an absolute and a differential pressure sensor for obtaining absolute pressure measurments under high temperature gradients. A high accuracy quartz absolute pressure sensor is used during a period of constant temperature. A sensor output defines a start range for differential sensor, which has less absolute accuracy but is less susceptible to temperature effects of high temperature gradients.
Abstract:
The present invention provides a drilling system for drilling oilfield boreholes or wellbores utilizing a drill string having a drilling assembly conveyed downhole by a tubing (usually a drill pipe or coiled tubing). The drilling assembly includes a bottom hole assembly (BHA) and a drill bit. The bottom hole assembly preferably contains commonly used measurement-while-drilling sensors. The drill string also contains a variety of sensors for determining downhole various properties of the drilling fluid. Sensors are provided to determine density, viscosity, flow rate, clarity, compressibility, pressure and temperature of the drilling fluid at one or more downhole locations. Chemical detection sensors for detecting the presence of gas (methane) and H2S are disposed in the drilling assembly. Sensors for determining fluid density, viscosity, pH, solid content, fluid clarity, fluid compressibility, and a spectroscopy sensor are also disposed in the BHA. Data from such sensors may be processed downhole and/or at the surface. Corrective actions are taken based upon the downhole measurements at the surface which may require altering the drilling fluid composition, altering the drilling fluid pump rate or shutting down the operation to clean wellbore. The drilling system contains one or more models, which may be stored in memory downhole or at the surface. These models are utilized by the downhole processor and the surface computer to determine desired fluid parameters for continued drilling. The drilling system is dynamic, in that the downhole fluid sensor data is utilized to update models and algorithms during drilling of the wellbore and the updated models are then utilized for continued drilling operations.
Abstract:
A coring apparatus permitting taking of a non-rotating core sample and testing of same, as by NMR, prior to breakage and ejection from the apparatus. A core barrel is suspended from a rotating outer sleeve by one or more bearing assemblies which permit the core barrel to remain stationary during rotation of the sleeve with attached core bit for cutting the core. A core test device is fixed with respect to the core barrel on the outside thereof, to test the core as it proceeds through the barrel. The apparatus optionally includes a directional detecting device such as an inclinometer, and a compact set of circumferentially-spaced steering arms for changing the direction of the apparatus during coring.