Abstract:
A drill bit according to one embodiment includes a center member configured to rotate at a first speed and an outer member disposed outside the center member, wherein the outer member is configured to rotate at a second speed. The drill bit also includes a first cutter disposed on the center member and a second cutter disposed on the outer member, wherein the first speed and second speeds are configured to control a resultant side force of the drill bit.
Abstract:
A borehole wall cleaning apparatus and method for obtaining an improved seal between a fluid sampling device and a portion of the borehole wall. Clean drilling fluid is pumped into a drilling tool using a mud pump. A fluid diverter in the tool diverts all or part of the clean drilling fluid through a port to clear a portion of a borehole wall. A sealing pad is moved against the clean portion. A sampling port is exposed to the sealed portion for sampling and/or testing fluid from the formation.
Abstract:
A method for conducting a formation test includes providing a volume change model for a tool component, and providing a control program that uses the volume change model to estimate a system volume change resulting from a change in the tool component during a downhole operation. An apparatus for conducting a formation test includes a carrier, a formation test tool, a measurement device that estimates a change in a tool component during operation, and a processor that uses a volume change model to estimate a system volume change resulting at least in part from the change in the tool component during a downhole operation.
Abstract:
A formation testing while drilling (FTWP) apparatus and method are provided for obtaining highly accurate pressure measurements in a well borehole using a combination of an absolute and a differential pressure sensor for obtaining absolute pressure measurments under high temperature gradients. A high accuracy quartz absolute pressure sensor is used during a period of constant temperature. A sensor output defines a start range for differential sensor, which has less absolute accuracy but is less susceptible to temperature effects of high temperature gradients.
Abstract:
A method, apparatus and computer-readable medium for reducing a vibration of a drill string in a borehole. A sensor of the drill string obtains one or more measurements of a parameter of the vibration. A processor determines at least one force for controlling the measured vibration from the measured parameter. At least one actuator applies the determined at least one force against the borehole wall to control the vibration of the drill string.
Abstract:
A formation pressure testing while drilling device on a bottomhole assembly makes measurements of fluid pressure during drilling of a borehole. Based on the pressure measurements, drilling direction can be altered to maintain the wellbore in a desired relation to a fluid contact. Acoustic transmitters and/or receivers on the bottomhole assembly can provide additional information about bed boundaries, faults and gas-water contacts.
Abstract:
Methods for estimating formation pressure from data taken during the drawdown cycle are presented. In one aspect, a method of determining a formation pressure during drawdown of a formation comprises sampling fluid from a formation using a downhole tool having a sample volume and a fluid sampling device. At least one time dependent parameter of interest related to the fluid is determined during the drawdown. The at least one time dependent parameter is analyzed using a plurality of calculation techniques to determine the formation pressure. The techniques include (i) a first pressure derivative technique; (ii) a second pressure derivative technique; (iii) a formation rate analysis technique; (iv) a dp/dt-ratio technique; and (v) a stepwise drawdown technique.
Abstract:
A bottomhole assembly (BHA) coupled to a drill string includes one or more controllers, and a hole enlargement device that selectively enlarges the diameter of the wellbore formed by the drill bit. The hole enlargement device includes an actuation unit that may move extendable cutting elements o the hole enlargement device between a radially extended position and a radially retracted position. The actuation unit may be responsive to a signal that is transmitted from a downhole and/or a surface location. The hole enlargement device may also include one or more position sensors that transmit a position signal indicative of a radial position of the cutting elements. In an illustrative operating mode, one or more operating parameters of the hole enlargement device may be adjusted based on one or more measured parameters. This adjustment may be done in a closed-loop or automated fashion and/or by human personnel.
Abstract:
A formation pressure testing while drilling device on a bottomhole assembly (21) makes measurements of fluid pressure during drilling of a borehole (15). Based on the pressure measurements, drilling direction can be altered to maintain the wellbore (15) in a desired relation to a fluid contact. Acoustic transmitters and/or receivers (59,61) on the bottomhole assembly can provide additional information about bed boundaries, faults and gas-water contacts.
Abstract:
An apparatus and method capable of incrementally decreasing the borehole pressure at a variable rate by controlling a test volume within the borehole. The system includes an incrementally controllable pump, closed loop feedback and a controller for drawing down the pressure of a test volume to a level just below formation pressure. This incremental drawdown system will significantly reduce the overall measurement time, thereby increasing drilling efficency and safety.