Abstract:
A method for growing a beta-Ga2O3 single crystal hardly cracking and having a weakened twinning tendency and an improved crystallinity, a method for growing a thin-film single crystal with high quality, a Ga2O3 light-emitting device capable of emitting light in the ultraviolet region, and its manufacturing method are disclosed. In an infrared-heating single crystal manufacturing system, a seed crystal and a polycrystalline material are rotated in mutually opposite directions and heated, and a beta-Ga2O3 single crystal is grown in one direction selected from among the a-axis direction, the b-axis direction, and c-axis direction. A thin film of a beta-Ga2O3 single crystal is formed by PLD. A laser beam is applied to a target to excite atoms constituting the target. Ga atoms are released from the target by a thermal and photochemical action. The free Ga atoms are bonded to radicals in the atmosphere in the chamber. Thus, a thin-film of a beta-Ga2O3 single crystal is grown on a substrate of a beta-Ga2O3 single crystal. A light-emitting device comprises an n-type substrate produced by doping a beta-Ga2O3 single crystal with an n-type dopant and a p-type layer produced by doping the beta-Ga2O3 single crystal with a p-type dopant and junctioned to the top of the n-type substrate. The light-emitting device emits light from the junction portion.
Abstract translation:生长β-Ga2O3单晶的方法难以开裂并且具有弱的孪晶倾向和改善的结晶度,用于生长具有高质量的薄膜单晶的方法,能够发射紫外线的Ga 2 O 3发光器件 区域及其制造方法。 在红外加热单晶体制造系统中,晶种和多晶材料沿相反方向旋转并加热,并且在从a轴<100>方向选择的一个方向上生长β-Ga 2 O 3单晶, b轴<010>方向和c轴<001>方向。 由PLD形成β-Ga2O3单晶的薄膜。 将激光束施加到靶上以激发构成靶的原子。 Ga原子通过热和光化学作用从靶释放出来。 游离的Ga原子与腔中的大气中的自由基结合。 因此,在β-Ga 2 O 3单晶的衬底上生长β-Ga 2 O 3单晶的薄膜。 发光器件包括通过掺杂具有n型掺杂剂的β-Ga 2 O 3单晶和通过用p型掺杂剂掺杂β-Ga 2 O 3单晶而产生的p型层而制造的n型衬底,并且结合到 n型衬底的顶部。 发光装置从接合部发射光。
Abstract:
An electronic device has an alloy layer containing magnesium oxide and at least one of zinc oxide and cadmium oxide and having a cubic structure on a substrate. The alloy layer may be directly on the substrate or, alternatively, one or more buffer layers may be between the alloy layer and the substrate. The alloy layer may be domain-matched epitaxially grown directly on the substrate, or may be lattice-matched epitaxially grown directly on the buffer layer. The cubic layer may also be used to form single and multiple quantum wells. Accordingly, electronic devices having wider bandgap, increased binding energy of excitons, and/or reduced density of growth and/or misfit dislocations in the active layers as compared with conventional III-nitride electronic devices may be provided.
Abstract:
A driving system taking into consideration the conductivity of a TFT which controls the light emitting operations of a current-driven light emitting element. When an N-channel type TFT is used as the second TFT (30) which switches supply of a driving current to a light emitting element (40), a high gate voltage (Vgcur) is obtained by lowering the potential at a common feeder line (com) against the potential at the counter electrode (op) of the element (40). A p-channel TFT is used as a first TFT (20) and the polarity of the low potential of a scanning signal (Sgate), and the potential at the common feeder line (com) is made equal to that of the potential at a potential holding electrode (st) at turning-on time. The driving voltage of the light emitting element is dropped and the display quality of the element is improved by shifting the potential of picture signals (data) for turning on in the direction in which the turning-on resistances of the TFTs (20 and 30) become smaller within the range of the driving voltage of the display device (1).
Abstract:
표시 장치가 제공된다. 표시 장치는 복수의 화소들을 포함하는 기판, 상기 기판 상에서 서로 이격된 제1 전극 및 제2 전극, 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광 소자, 및 상기 발광 소자 상에 배치된 도전 패턴을 포함하고, 상기 발광 소자는 제1 반도체층, 제2 반도체층, 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치된 활성층을 포함하고, 상기 도전 패턴은 상기 활성층과 중첩하되, 상기 제1 반도체층 또는 상기 제2 반도체층과 비중첩한다.
Abstract:
An optoelectronic semiconductor light emitting device configured to emit light having a wavelength in the range from about 150 nm to about 425 nm is disclosed. In embodiments, the device comprises a substrate having at least one epitaxial semiconductor layer disposed thereon, wherein each of the one or more epitaxial semiconductor layers comprises a metal oxide. Also disclosed is an optoelectronic semiconductor device for generating light of a predetermined wavelength comprising a substrate and an optical emission region. The optical emission region has an optical emission region band structure configured for generating light of the predetermined wavelength and comprises one or more epitaxial metal oxide layers supported by the substrate.
Abstract:
본 발명은 제1 도전성 반도체층, 광활성층 및 제2 도전성 반도체층이 순차적으로 적층된 LED 웨이퍼를 준비하는 단계; LED 웨이퍼의 제2 도전성 반도체층 상에 전극층 또는 전기적 극성이 서로 상이한 영역이 인접하도록 패터닝된 분극유도층을 형성시키는 단계; 낱 개의 소자가 나노 또는 마이크로 크기인 길이와 너비를 갖는 평면을 가지며, 평면에 수직인 두께가 길이보다 작도록 LED 웨이퍼를 두께방향으로 식각하여 다수 개의 마이크로-나노핀 LED 기둥을 형성시키는 단계; 및 다수 개의 마이크로-나노핀 LED 기둥을 LED 웨이퍼로부터 분리시키는 단계;를 포함하는 마이크로-나노핀 LED 소자 제조방법에 관한 것이다. 본 발명에 따른 마이크로-나노 핀 LED 소자는 발광면적을 증가시키면서 표면에 노출된 광활성층 면적은 크게 줄여서 효율 저하를 방지 또는 최소화할 수 있다.
Abstract:
본 출원은 LED 표시장치에 관한 것으로, 특히 고해상도 및 발광부 면적이 증가되는 LED 표시장치에 관한 것이다. 본 발명의 특징은 제 1 발광영역과 제 2 발광영역이 서로 중첩되어 위치하도록 하며, 제 1 발광영역과 제 3 발광영역이 서로 중첩되어 위치하도록 함으로써, 하나의 픽셀에서 R, G, B 컬러가 모두 구현되도록 할 수 있어, R, G, B 서브픽셀을 각각 필요로 했던 기존에 비해 픽셀의 사이즈를 줄일 수 있게 된다.
Abstract:
An optoelectronic device comprising a pad substrate comprising an array of pads connected to a driving circuit; and a device layer structure deposited on a substrate, wherein the device layer structure including a plurality of active layers and conductive layers; and a pillar layer formed on or part of a first conductive layer, wherein the pillar layer is patterned into array of pillars to create pixelated micro devices and wherein the array of pillars is bonded to the array of pads. The redundant pillars that are not bonded to the array of pads may be provided a fixed voltage or used as sensors.