Abstract:
Included are systems, apparatuses, and methods for operation of an electronic inflow control device without electrical connections. An example of a well system comprises an electric control line and an electronic inflow control device. The electric control line comprises at least one primary winding. The electronic inflow control device comprises a secondary winding inductively coupled to the primary winding; a flow regulator in fluidic communication with an inlet of the electronic inflow control device and adjustable to provide a flow resistance to a fluid flowing through the electronic inflow control device, and a controller configured to actuate the flow regulator to change the flow resistance through the electronic inflow control device.
Abstract:
A downhole cleanout tool includes a tool housing have a fluid inlet and a fluid outlet, and a filter between the inlet and the outlet. The tool includes a pump that is fluidly coupled to at least the fluid inlet to motivate fluid across the filter. The tool also includes a rotatable housing having a nozzle that is fluidly coupled to the pump outlet. The rotatable housing may rotate about a longitudinal axis of the rotatable housing, and the filter and pump may be disposed within the rotatable housing. Each nozzle may include a nozzle outlet oriented at an angle (a) from a radial axis extending from the longitudinal axis of the rotatable housing to a location where the nozzle outlet intersects the periphery of the rotatable housing such that motivation of fluid through the nozzle results in rotation of the rotatable housing.
Abstract:
The present disclosure provides for a pig tracking and locating system that is able to pinpoint the exact location of a pig so that if the pig becomes stuck, it can be more efficiently located and retrieved without excessive searching. A representative system includes an unmanned underwater vehicle that travels with or very near the pig as it progresses through a pipeline, and gathers and stores information transmitted by the pig. This information may include location data that can be transmitted in the event the pig becomes stuck.
Abstract:
A method of detecting a fault in an oil and gas apparatus controlled by a controller is provided. The method includes collecting a test set of data using a sensor proximate to an oil and gas apparatus during the operation of the oil and gas apparatus under test operating conditions, the test set of data being associated with an operating parameter of the controller, determining a percentage of the test set of data that falls outside a normal operation region of the oil and gas apparatus, and configuring the controller in response to the percentage being between a fault- free percentage threshold and a fault percentage threshold.
Abstract:
A resin-clay composition includes a first mixture including an epoxy resin and a nano-clay; and a curing agent added to the first mixture to produce a second mixture, wherein a presence of the nano-clay causes a change in curing time of the epoxy resin. The second mixture may be added into a hydrocarbon well for aggregating particulate matter. A percentage of the epoxy resin in the second mixture may include a range of about 10 to about 90 percent. A percentage of the clay in the second mixture may include a range of about 0 to about 20 percent, and wherein a percentage of the curing agent in the second mixture may include a range of about 10 to about 90 percent. The epoxy resin may include Diglycidyl ether of Bisphenol A epoxy resin.
Abstract:
A wellbore treatment fluid comprising: a base fluid; and additive comprising a first polymer bundle selected from the group consisting of cellulose nanofibrils, cellulose nanocrystals, and combinations thereof, wherein one or more functional groups of the first polymer are chemically modified A method of treating a portion of a wellbore comprising: introducing the treatment fluid into the wellbore.
Abstract:
A method of using an aqueous-based drilling fluid comprises: introducing the drilling fluid into a wellbore, wherein the wellbore penetrates a subterranean formation, wherein the drilling fluid comprises: (A) a base fluid, wherein the base fluid comprises water; and (B) a shale stabilizer additive, wherein the shale stabilizer additive: (i) is made from a protein; (ii) is food grade; and (iii) provides a shale retention of at least 85% for the subterranean formation.
Abstract:
A reduced pressure delivery system for applying a reduced pressure to a tissue site is provided. The system includes a manifold having a plurality of flow channels. The manifold is configured to be placed adjacent the tissue site. A first conduit is in fluid communication with the flow channels of the manifold to deliver a reduced pressure to the flow channels. A second conduit is in fluid communication with the flow channels of the manifold and is operably connected to a valve. The valve selectively purges the second conduit with ambient air when the valve is positioned in an open position, and a controller is operably connected to the valve to place the valve in the open position for a selected amount of time at a selected interval during delivery of reduced pressure through the first conduit.
Abstract:
A screen assembly for wellbore production wherein a base pipe is wrapped with a screen constructed one or more cables formed from a plurality of non-metallic fibers bonded to one another with a metal binder. The non-metallic fibers may be basalt fibers or another ceramic material. The metal binder forms a metal matrix that has a first diameter about a primary cable axis, with the metal matrix securing the non-metallic fibers so that they have a second diameter about the primary cable axis, where the second diameter is larger than the first diameter, minimizing exposure of the metal matrix to wellbore fluids.
Abstract:
Methods to perform wellbore strengthening, methods to pulse hydraulic fracture a downhole formation, and wellbore strengthening systems are disclosed. A method to perform wellbore strengthening includes deploying an annular isolation device in a wellbore of a well. The method also includes pumping a fluid carrying a loss circulation material through a conveyance into a zone of an annular region of a wellbore. The method further includes activating the annular isolation device to reduce fluid flow in the zone. The method further includes generating a hydraulic pulse to form one or more fractures. The method further includes injecting a loss circulation material into the one or more fractures.