Abstract:
A lighting unit includes a power supply that provides a maximum voltage and multiple LED lighting circuits. Each of the LED lighting circuits includes an LED string, multiple switches, a switching sequencer and a switch controller. The LED string includes multiple series-connected emitters having a total forward voltage that exceeds the maximum voltage of the power supply. Each of the switches is coupled in parallel with a respective LED of the LED string. The switching sequencer provides a sequence of switching patterns such that a total forward voltage of simultaneously active LEDs in each switching pattern does not exceed the maximum voltage of the power supply. The switch controller actuates switches according to each of the switching patterns in the sequence. The LED string of each of the plurality of LED lighting circuits is arranged in a two-dimensional array.
Abstract:
A heat sink is provided having at least one receiving section configured for thermal coupling to at least one lighting module. The heat sink includes at least two connection sections on opposite sides of the at least one receiving section. Each of the at least two connection sections includes at least one reference pin protruding at least partially from a first surface of the at least one connection section and at least one alignment recess protruding into the first surface of the at least one connection section such that the heat sink is configured for thermal coupling to another heat sink via the at least two connection sections.
Abstract:
Methods, apparatus and systems are described herein. A light source includes a first light emitting diode (LED) die configured to emit a first die color and a second LED die configured to emit a second die color. A first filling is disposed over the first LED die. The first filling has a convex surface and includes a first phosphor such that the first die color is converted to a first illuminous color. A second filling is disposed over the second LED die. The second filling includes a second phosphor such that the second die color is converted to a second illuminous color that has a higher absorption energy than an illumination energy of the first illuminous color.
Abstract:
Light-emitting devices are described herein. A device includes a packaging substrate having a top surface and a bottom surface and a hybridized device having a bottom surface on the top surface of the packaging substrate. The hybridized device includes a silicon backplane that includes input/output (I/O) pins and a light-emitting diode (LED) array having a bottom surface on a top surface of the silicon backplane. Passive components are disposed on the top surface of the packaging substrate. Conductive connectors are electrically coupled between the top surface of the hybridized device and the top surface of the packaging substrate.
Abstract:
Systems, devices and methods are described herein. A device includes a power stage circuit, a switch and a first circuit. The switch is electrically coupled to the power stage circuit. The first circuit is electrically coupled to the power stage circuit and the switch and has a single output. The first circuit is configured to provide a first circuit output voltage at the single output. The first circuit output voltage has a first level on a condition that the power stage circuit is conducting at a peak current level. The first circuit output voltage has a second level on a condition that the power stage circuit is not conducting.
Abstract:
Systems, apparatus and methods for zero current detection and start-up for DC-DC converters are described herein. A device includes a first circuit and a second circuit. The first circuit receives a first voltage, at a first input, and provides a second voltage having one of a first level and a second level based on a level of the first voltage being above or below a threshold voltage. The second circuit is electrically coupled to the first input of the first circuit and decreases the level of the first voltage below a threshold voltage on a condition that the level of the first voltage is above the threshold voltage for a maximum time.
Abstract:
Methods and apparatus for initial cell search and selection using beamforming are described. An apparatus is configured with multiple receive beams and includes an antenna and a processor. The processor is operatively coupled to the antenna and sweeps a respective one of the multiple receive beams during each of multiple synchronization sub-frames, using a pre-defined sweep time and dwell period, to detect a synchronization signal. The processor also obtains symbol timing information and a synchronization signal index from the detected synchronization signal. The obtained synchronization signal index corresponds to a synchronization signal index of the set. The process decodes a first broadcast channel using the obtained symbol timing information, the obtained synchronization signal index and a predefined or blind-coded symbol distance between the detected synchronization signal and the first broadcast channel. The process decodes a second broadcast channel using information obtained from decoding the first broadcast channel.
Abstract:
Devices to be charged and wireless charging devices are disclosed. A DTBC includes a processing unit, a battery, an axially wound receiver coil and battery charging components. The battery powers the processing unit. The axially wound receiver coil has a first end and a second end located at opposite ends of a central axis of the axially wound receiver coil and receives electromagnetic flux via either one of the first end or the second end. The battery charging components are coupled between the battery and the axially wound receiver coil, convert the electromagnetic flux into direct current (DC) and apply the DC to charge the battery.
Abstract:
A method and apparatus for coordinated orthogonal channel access (COCA) are described. A wireless transmit/receive unit (WTRU) of a plurality of WTRUs receives a trigger to transmit an uplink (UL) control frame on a channel simultaneously with at least one other of the plurality of WTRUs. The WTRU transmits the control frame on the channel in response to receiving the trigger.
Abstract:
A method and apparatus for coexistence among wireless transmit/receive units (WTRUs) operating in the same spectrum are disclosed. A WTRU includes a memory, a receive unit, a transmit unit and a control unit. The memory stores coexistence gap patterns. Each of the coexistence gap patterns defines a pattern of transmission periods and silent periods for the WTRU and corresponds to a respective duty cycle. The receive unit receives from a base station information regarding a duty cycle for a wireless cell operated by the base station. The control unit selects one of the coexistence gap patterns based on the received information regarding the duty cycle for the wireless cell and controls the transmit unit to transmit information during the transmission periods and not transmit information during the silent periods of the selected one of the plurality of coexistence gap patterns.