Abstract:
Composites, designed "MNPC" materials, are formed by methods of which an exemplary method includes preparing a liquid suspension of magnetic nanoparticles in a carrier liquid in which the nanoparticles are not soluble. The carrier liquid can form a rigid polymer matrix for the nanoparticles whenever the carrier liquid is exposed to a rigidification condition. A first rigidification condition is applied to the suspension to rigidify the carrier liquid into the polymer matrix and thus form a rigid MNPC material. A fluidizing condition is applied to the rigid MNPC material to fluidize the matrix and allow movement of the nanoparticles in the matrix. While the matrix is fluid, the MNPC material is magnetically poled by exposure to an external magnetic field. Poling aligns at least some of the nanoparticles with the field and allows at least some particles to self-assemble with each other. While continuing the magnetic poling, a second rigidification condition is applied to the MNPC material to freeze further movement of the nanoparticles in the polymer matrix. The produced materials have enhanced properties including magneto-optical properties.
Abstract:
Compositions and methods wherein ordered structures of photonic nanocrystals are created in a liquid medium and then such structures are fixed by converting the liquid medium to a solid. In addition, compositions and methods of reversibly fixing such structures, so that ordered structures can be reversibly created in a liquid medium, converted to solid, and then converted back to liquid, wherein new ordered structures can be created and again fixed.
Abstract:
경화성 물질 및 상기 경화성 물질 내에 분산된 자성 나노입자들을 포함하는 구조색 생성용 조성물을 제공하는 단계; 상기 구조색 생성용 조성물을 비혼화성 용매에 투입하여 에멀젼을 형성하는 단계; 상기 에멀젼에 자기장을 인가하여, 상기 경화성 물질의 에멀젼 액적 내에 위치한 상기 자성 나노입자들이 일차원적 사슬 구조로 정렬하도록 하는 단계; 및 상기 에멀젼 액적을 경화하여 상기 사슬 구조를 고정화하는 단계를 포함하는 구조색을 갖는 미세구체의 형성방법이 제공된다.
Abstract:
액체 매질 및 상기 액체 매질에 분산된 자성 나노입자들을 포함하는 조성물을 제공하는 단계; 상기 조성물에 자기장을 인가하여 상기 자성 나노입자들을 정렬시키는 단계; 및 패턴화된 에너지원을 조사하여 상기 조성물을 고체화시키는 단계를 포함하되, 상기 자기장의 세기를 변화시키면서 상기 조성물의 여러 부분들을 순차적으로 고체화시켜 복수의 컬러 코드들을 고정시키는 컬러 코드화 방법이 제공된다.
Abstract:
The present invention relates to ferromagnetic materials based on nano-sized bacterial cellulose templates. More specifically, the present invention provides an agglomerate free magnetic nanoparticle cellulose material and a method of forming such magnetic nanoparticle cellulose material. Further, the magnetic nonoparticles are physically attached on the cellulose material and evenly distribute.
Abstract:
Изобретение относится к нанотехнологии и наноматериалам, к технологиям получения и применения тонкопленочных и композитных материалов.Материал включает в свой состав коллоидные частицы, химически связанные и распределенные в материале пространственно однородно. Все компоненты материала способны образовывать растворы в жидкой фазе. Получаемая тонкая пленка способна находиться в жидкой фазе в свободном состоянии. Уникальные свойства заявляемого тонкопленочного материала обусловливают широкие перспективы его промышленного применения. Предложен способ формирования высокоорганизованных тонкопленочных материалов и планарных коллоидных наносистем на основе эффектов самосборки и самоорганизации низкоразмерных структур непосредственно в объеме жидкой фазы. Для получения тонкопленочного материала в жидкую фазу, представляющую собой раствор коллоидных частиц, однократно или многократно добавляют один или несколько реагентов или компонентов, способных образовывать химические связи с коллоидными частицами. Способ позволяет обеспечить высокую плотность упаковки частиц в тонкопленочном материале и высокую эффективность использования исходных материалов и реагентов, является экологически безопасным, обеспечивает получение большого количества материала и допускает возможности автоматизации технологического процесса.
Abstract:
A structure having a thin film magnetic layer sandwiched between a substrate and a surface layer is bombarded with ions. The ions impact the surface layer and cause atoms from the surface layer to be moved to implant into the magnetic layer. Thereby the magnetic characteristics of a region of the magnetic layer are altered, modified or destroyed.
Abstract:
Glass-ceramic materials are fabricated by infiltrating a porous glass matrix with a precursor for the crystalline phase, drying, chemically reacting the precursor, and firing to produce a consolidated glass-ceramic material. The pore size of the glass matrix constrains the growth and distribution of nanocrystallite size structures. The precursor infiltrates the porous glass matrix as an aqueous solution, organic solvent solution, or molten salt. Chemical reaction steps may include decomposition of salts and reduction or oxidation reactions. Glass-ceramics produced using Fe-containing dopants exhibit properties of magnetism, low Fe2+ concentrations, optical transparency in the near-infrared spectrum, and low scattering losses. Increased surface area permits expanded catalytic activity.
Abstract:
A composition containing nanomagnetic particles. The nanomagnetic particles have an average particle size of less than about 100 nanometers, a saturation magnetization of from about 2 to about 2,000 electromagnetic units per cubic centimeter, a phase transition temperature of from about 40 to about 200 degrees Celsius, and a squareness of from about 0.05 to about 1.0; the average coherence length between adjacent nanomagnetic particles is less than about 100 nanometers; and the nanomagnetic particles are at least triatomic.
Abstract:
A shielded assembly containing a substrate and a shield. The shield contains both nonmagnetic material and a material with an electrical resistivity of from about 1 microohm-centimeter to about 1 x 10 25 microohm centimeters. The nanomagnetic material has a mass density of at least about 0.01 grams per cubic centimeter, a saturation magnetization of from about 1 to about 36,000 Gauss, a coercive force of from about 0.01 to about 5000 Oersteds, a relative magnetic permeability of from about 1 to about 500,000, and an average particle size of less than about 100 nanometers.