Abstract:
A method is provided for modulating transpiration in an organism that is capable of photosynthesis, where the method includes contacting the organism with a composition including an effective amount of an oxygen antagonist. Also provided is an apparatus for modulating transpiration in an organism that is capable of photosynthesis.
Abstract:
A method for sealing a leak in a pipeline used to transport fluid includes positioning a sealing device within the pipeline, moving the sealing device through the pipeline to a leak location, and internally generating an inflation pressure to inflate the sealing device to substantially cover a leak opening and limit release of the fluid from the pipeline.
Abstract:
A system for detecting and responding to an intruding camera. The system includes an electronic media display device having a screen configured to display content, a sensor, and a processing circuit. The processing circuit is configured to obtain information from the sensor, analyze the information to determine a presence of a camera, and edit any displayed content in response to the presence of the camera.
Abstract:
An apparatus for separating a mineral from a liquid including a housing and a fluid having a mineral bearing particle and contained within the housing. The apparatus further includes a generator configured to apply a radio-frequency electromagnetic field to the mineral bearing particle. The field produces a temperature increase within a portion of the mineral bearing particle and the mineral bearing particle transfers heat into the fluid, the heated fluid imposing motion-inducing forces on the particle.
Abstract:
A computer or entertainment system is configured to respond to data received from a micro impulse radar configured to detect movement, physiology, presence, and/or absence of a person in one or more regions near the computer or entertainment system.
Abstract:
A system is described generally for a water capture structure that is configured to capture wave water lapping over at least one wall of the water capture structure. The at least one wall extends at least above a nominal surface water level and at least one conduit extends downward from the water capture structure. The at least one conduit has a length extending to a depth at which at least one property of water at the depth differs substantially from that of water at the surface. The at least one conduit is configured to provide thermal energy to water outside of the at least one conduit. The at least one conduit has at least one conduit wall.
Abstract:
A nuclear fission reactor, flow control assembly, methods therefor and a flow control assembly system. The flow control assembly is coupled to a nuclear fission module capable of producing a traveling burn wave at a location relative to the nuclear fission module. The flow control assembly controls flow of a fluid in response to the location relative to the nuclear fission module. The flow control assembly comprises a flow regulator subassembly configured to be operated according to an operating parameter associated with the nuclear fission module. In addition, the flow regulator subassembly is reconfigurable according to a predetermined input to the flow regulator subassembly. Moreover, the flow control assembly comprises a carriage subassembly coupled to the flow regulator subassembly for adjusting the flow regulator subassembly to vary fluid flow into the nuclear fission module.
Abstract:
A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
Abstract:
Illustrative embodiments provide nuclear fission igniters for nuclear fission reactors and methods for their operation. Illustrative embodiments and aspects include, without limitation, a nuclear fission igniter configured to ignite a nuclear fission deflagration wave in nuclear fission fuel material, a nuclear fission deflagration wave reactor with a nuclear fission igniter, a method of igniting a nuclear fission deflagration wave, and the like.