Abstract:
A composition includes specific amounts of a poly(butylene terephthalate), a reinforcing filler, and a polycarbonate that includes a copolyestercarbonate and a polycarbonate-polydiorganosiloxane block copolymer. The copolyestercarbonate includes aliphatic ester groups. The composition, which exhibits a desirable balance of melt flow and ductility, is especially useful for forming thin plastic parts of consumer electronic devices, including mobile phones.
Abstract:
The present invention relates to polysiloxane-polyamide block copolymers. In various embodiments, the present invention provides a polysiloxane-polyamide block copolymer including the repeating unit -[M 1 -M 2 ] DP1 -, wherein M 1 is a divalent polydiorganosiloxane, and wherein M 2 is a divalent polyamide. The present invention also provides methods of making the copolymer, compositions and articles of manufacture including the copolymer, and methods of using the copolymer.
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
Consumer product compositions comprising organopolysiloxane conditioning polymers. Also disclosed are processes for making such compositions and to methods of using such compositions to provide a conditioning benefit.
Abstract:
Consumer product compositions providing enhanced hydrophobic benefit agent deposition. The benefit agent is provided as a benefit agent/deposition aid emulsion, where the benefit agent is physically adsorbed to the deposition aid before the emulsion is added to the balance of ingredients.
Abstract:
Disclosed herein are fiber reinforced thermoplastic composite with desired physical properties, such as high strength, high impact and high flow while maintaining the OSU heatrelease compliancy.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate composition, glass fibers and a flame retardant that comprises a phenoxyphosphazene compound. Disclosed herein too are methods for manufacturing a flame retardant composition that comprises blending a polycarbonate composition, glass fibers and a flame retardant that comprises a phenoxyphosphazene compound.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane- polycarbonate copolymer comprises an amount of greater than 10 weigh percent of the polysiloxane and where the molecular weight of the polysiloxane-polycarbonate copolymer is greater than or equal to 25,000 grams per mole; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; and 1 to 15 weight percent of a phosphazene compound. Disclosed herein too is a method comprising blending a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; where the reinforcing filler is a glass fiber, a carbon fiber, a metal fiber, or a combination comprising at least one of the foregoing reinforcing fillers; and 1 to 15 weight percent of a phosphazene compound; and extruding the flame retardant composition.