Abstract:
An apparatus and method for detecting physiological function, for example, nerve conduction, is described. In one embodiment the apparatus includes a housing including a stimulator shaped to fit a first anatomical site and a detector shaped to fit a second anatomical site. The housing automatically positions the detector substantially adjacent to the second anatomical site when the stimulator is positioned substantially adjacent to the first anatomical site. The detector contains a plurality of individual detection elements, whereby the response evoked by stimulation at the first anatomical site is measured using one or more of these detection elements at the second anatomical location.
Abstract:
Disclosed are compositions, devices, systems and fabrication methods for stretchable composite materials and stretchable electronics devices. In some aspects, an elastic composite material for a stretchable electronics device includes a first material having a particular electrical, mechanical or optical property; and a multi-block copolymer configured to form a hyperelastic binder that creates contact between the first material and the multi-block copolymer, in which the elastic composite material is structured to stretch at least 500% in at least one direction of the material and to exhibit the particular electrical, mechanical or optical property imparted from the first material. In some aspects, the stretchable electronics device includes a stretchable battery, biofuel cell, sensor, supercapacitor or other device able to be mounted to skin, clothing or other surface of a user or object.
Abstract:
Autoexpandable devices for obtaining impedance, pressure, and other measurements in the gastrointestinal tract and other organs. In an exemplary embodiment of a capsule of the present disclosure, the capsule comprises an outer shell configured to dissolve or otherwise be digested within a stomach after ingestion, an expandable material positioned within the outer shell, the expandable material configured for expansion within the stomach after the outer shell has dissolved, and at least one element or sensor selected from the group consisting of an impedance element and a pressure sensor.
Abstract:
A method in gait rehabilitation for detecting a foot being lifted comprises: receiving (102) a plurality of signals from respective pressure sensors (12), mounted beneath a foot of a person, each signal providing a time sequence of values representing asserted pressure; processing the received signals, wherein said processing comprises, for each signal, assigning states to the respective pressure sensor (12) for determining when the foot is being lifted for walking, and wherein said assigning of states comprises: identifying that the sequence of values are maintained above an upper threshold (32) for a duration exceeding a time threshold (36); and upon such identifying assigning a prepared state to the sensor (12); and, when the sensor (12) is in the prepared state, identifying (108) a value below a lower threshold (34) indicating that the foot is potentially lifted; and upon such identifying assigning an unprepared state to the sensor (12); and wherein said processing further comprises, when assigning an unprepared state to a first sensor, determining (110) whether a prepared state is assigned to a second sensor and comparing (112) a priority of the first sensor and the second sensor.
Abstract:
Aspects of the subject disclosure may include, for example, a system or biological sensor configured to detect an adverse biological condition from a comparative measurement from two or more body parts. Other embodiments are disclosed
Abstract:
A wearable device includes a flexible printed circuit board and one or more conductive stiffeners. The conductive stiffeners include a conductive surface that can be electrically or thermally connected to contact pads on the flexible printed circuit board. The wearable device can further include an adhesive layer or an encapsulation layer. The adhesive layer and the encapsulation layer can include conductive portions surrounded by non-conductive portions. The conductive portions can be aligned with the conductive stiffeners and together transmit electrical and/or thermal energy to the contact pads of the flexible printed circuit board.
Abstract:
A head set (2) comprises a brain electrical activity (EEG) sensing device (3) comprising EEG sensors (22) configured to be mounted on a head of a wearer so as to position the EEG sensors (22) at selected positions of interest over the wearers scalp, the EEG sensing device comprising a sensor support (4) and a flexible circuit (6) assembled to the sensor support. The sensor support and flexible circuit comprise a central stem (4a, 6a) configured to extend along a center plane of the top of the head in a direction from a nose to a centre of the back of a wearers head, a front lateral branch (4b, 6b) configured to extend across a front portion of a wearer's head extending laterally from the central stem, a center lateral branch (4c, 6c) configured to extend across a top portion of a wearer's head essentially between the wearer's ears, and a rear lateral branch (4d, 6d) configured to extend across a back portion of a wearer's head. The sensor support (4) comprises a base wall (401) and side walls (402) extending along edges of the base wall to form an essentially flat "U" shaped channel (403) in which the flexible circuit (6) is inserted and the base wall comprise EEG sensor orifices (404) to allow access to the EEG sensor contacts or electrodes on the flexible circuit.
Abstract:
An optical device (100) is disclosed, comprising a collimator (110) and a first lenslet array (130, 430) and a second lenslet array (140, 440). The first lenslet array and the second lenslet array are provided with the same tessellation pattern, aligned with each other and arranged such that a projection (150) of a light source (122) is focused on the second lenslet array, which is configured to emit non-focused light. At least some of the lenslets of the second array are formed such that a ratio of their sagittal and meridional dimensions varies at least along the meridional direction (M) of the second lenslet array, based on the varying shape of the projection of the light source as seen by said lenslets, so as to achieve an improved mixing, intensity and uniformity of light emitted from the optical device.
Abstract:
A medical instrument includes a sensor, a surface, at least one non-conductive material, and at least one pair of contacts. The sensor has at least one coil formed on a conductive material. The surface is suitable for receiving the sensor and can be placed in an EM field. The at least one non-conductive material covers the at least one coil of the sensor. The at least one pair of contacts are electrically connected to the at least one coil and connectable to a measurement device, which senses an induced electrical signal based on a magnetic flux change of the EM field. The location of the medical instrument in a coordinate system of the EM filed is identified based on the induced electrical signal in the sensor.