Abstract:
Device, system and method to monitor user breathing patterns utilizing posture and diaphragm (breathing) sensor signals. The user-worn device comprises a housing attached to a retractable belt that is worn around the user's trunk. The housing contains both posture and breathing sensors, and a spring tensioned spool that interacts with the retractable belt. The device monitors the output signals of these sensors and measures the state of both the user's posture and diaphragm (e.g. changes in the belt's length or force on the belt as a function of user breathing) to analyze breathing signals. The system's processor receives, processes, and transmits sensor signal data, and can also calibrate and interpret these signals utilizing various algorithms. In a preferred embodiment, the posture sensor is an accelerometer, and the retractable belt winds around a spring tensioned spool in the device's housing.
Abstract:
Systems and methods for non-invasive respiratory rate measurement are disclosed. In some embodiments, a system comprises a wearable member including an energy transmitter configured to project energy into tissue of a user. An energy receiver generates a multichannel signal based on a first received portion of the energy, the received portion of energy being received through the tissue of the user. A respiratory rate calculation system includes a pre- processing module for filter noise from the signal. A spectrum module determines a spectrum of the signal. A respiratory rate processing module determines a first respiratory rate from the spectrum of the signal. A noise reference and one or more second respiratory rates are obtained. A third respiratory rate is determined based on the first respiratory rate, the noise reference, and the one or more second respiratory rates. A communication module provides a message based on the third respiratory rate.
Abstract:
Embodiments described herein relate generally to biosensing garments, and in particular, to systems and methods for monitoring respiration in a biosensing garment, whereby an improved integration of the respiration monitoring circuit into the garment is achieved, resulting in improved signal quality and durability. In some embodiments, an apparatus includes an elongate member having a longitudinal axis and configured to be stretchable along its longitudinal axis. The elongate member includes a plurality of elastic members (e.g., a first elastic member, a second elastic member, and a third elastic member) that extend along the longitudinal axis. A conductive member is coupled to the first, second and third members, and forms a "curved" pattern along the longitudinal axis of the elongate member. The conductive member is configured to change from a first configuration to a second configuration as the elongate member stretches along its longitudinal axis.
Abstract:
Disclosed is a method and device for assessing respiratory data in a monitored subject. The disclosed method comprises collecting respiratory data of the subject at different levels of exertion with a physiological monitoring system, the respiratory data at least relating to instantaneous lung volume and comprising the end expiratory lung volume (EELV) after expirations; collecting exertion level data of the subject at the different levels of exertion, the exertion level data at least relating to instantaneous oxygen demand and/or heart rate; establishing a parametric relation between the collected respiratory data and the collected exertion level data, the parametric relation being described by one or more parameters; and assessing the respiratory data of the subject in terms of the value of the one or more parameters. The method and device allow a reliable measuring of dynamic hyperinflation in subjects without requiring much attention on the part of the subject.
Abstract:
A garment for measuring one or more parameters of a wearer includes a base material configured to be worn by a wearer and a sensing component. The sensing component has a first elastic stretchability along a first axis and a second elastic stretchability along a second axis that is greater than the first elastic stretchability. The sensing component is integrated into a first location of the base material corresponding to a predetermined region of the wearer. The sensing component includes an electrically conductive material having an electrical resistance that changes with a change in a length of the sensing component. The sensing component includes at least one wire to electrically couple the electrically conductive material to a controller including a processor and a memory. The memory stores processor-executable instructions to cause the controller to determine a electrical resistance value across the sensing component via the at least one wire.
Abstract:
A pulmonary measurement system includes a pulmonary measurement device that includes a mouthpiece with an airflow path and a sensor positioned in the airflow path; and a controller communicably coupled to the sensor. The controller includes a processor and instructions stored in memory and is operable to execute the instructions with the processor to perform operations including identifying a measurement from the sensor; identifying a particular equation stored in the memory, the particular equation developed using data analytics and including an input parameter that is based on the identified measurement; and based on the identified measurement and the particular equation, determining a value of absolute lung volume.
Abstract:
Provided according to embodiments of the invention are methods, devices and systems for monitoring respiration. Methods described herein include isolating an isolated DC component signal stream, and optionally an isolated AC component signal stream, from the raw PPG signal; calculating a waveform parameter using at least a portion of the isolated DC component signal stream, and optionally, a corresponding portion of the raw PPG signal stream and/or the isolated AC component signal stream; and monitoring respiration in the individual by analyzing the waveform parameter over time.
Abstract:
Apparatus for the measurement of lung function in laboratory animals as used in pre¬ clinical medical and pharmacological research. The apparatus comprises a conduit, at least one controllable flow generator generating a combination of a net flow of gas through the conduit and an oscillatory flow, at least one subject site being adapted to accommodate the at least one laboratory animal, the subject site comprising a breathing zone with an inlet and an outlet, the inlet being connected to the conduit to allow gas from the at least one flow generator to be delivered to the laboratory animal and a chest wall displacement measurement system connected to the at least one subject site to measure chest wall displacement of the at least one laboratory animal. Also disclosed is a sealing assembly for isolation at least one of a front subject chamber and a rear subject chamber.
Abstract:
A belt connector for electrically connecting an electrode belt to a biometric device to be carried on a human or animal body. The belt connector is made from one single piece which can be economically manufactured in order to function as a single-use consumable, to be used with a matching biometric device. The connector comprises a molded plastic frame having a shaped circular or semi-circular hole with radial flexibility to function as a female snap button fastener for receiving and fastening on the front side of the frame a male snap protrusion. The belt connector further comprises fastening means for fastening to the frame a belt end of said electrode belt, and a member adjacent to said snap fastener hole to engage an electrode wire end electrically connected to said belt such that said end is in contact with said hole and comes in electrical contact with a conducting male snap fastener inserted in said hole. The belt connector and belt is configured such that a person wearing the belt under operation is insulated from current running through the belt, in order to meet existing standards for medical devices.
Abstract:
A coil device is provided having a member adapted to extend around and conform to an outer surface of a subject and a conductor adapted to extend only once around a first portion of the subject. The coil device can be positioned about the subject in order to measure a volume of the subject. When placed about the subject in the presence of a relatively homogeneous magnetic field, the conductor can generate a signal indicative of a volume of the first portion of the subject. The coil device may also include two or more conductors separately generating signals indicating volumes of two or more corresponding portions of the subject. In some cases the coil device includes associated authorization data that can limit use of the coil device. Systems and methods incorporating the coil device are also provided.