Abstract:
Conduction velocity information for a cardiac region can be used to map the cardiac muscle fiber orientation of that region. In particular, for a plurality of locations within the cardiac region, a relationship between a local conduction velocity, a maximum local conduction velocity within the region, and a minimum local conduction velocity within the region is used to determine the cardiac muscle fiber orientation at the respective location. Even more particularly, when the local conduction velocity at the respective location equals the maximum local conduction velocity, the cardiac muscle fiber orientation is parallel to a direction of a conduction velocity vector at the respective location, and when the local conduction velocity at the respective location equals the minimum local conduction velocity, the cardiac muscle fiber orientation is perpendicular to a direction of a conduction velocity vector at the respective location.
Abstract:
A return pad of an electrosurgical system is disclosed. The return pad includes a plurality of conductive members and a plurality of sensing devices. The conductive members are configured to receive radio frequency current applied to a patient. The sensing devices are configured to detect at least one of the following: a nerve control signal applied to the patient; and a movement of an anatomical feature of the patient resulting from application of the nerve control signal.
Abstract:
A feeding transition system for transitioning an infant subject to oral feeding includes at least one no-flow nipple and at least one flow nipple. The no-flow nipple has a fully enclosed tip portion such that no fluid can flow directly from the nipple cavity through the nipple wall. The flow nipple is formed of a no-flow nipple having an aperture formed in the tip portion for flowing fluid from the nipple cavity through the nipple wall. The system includes a bolus delivery nipple formed of a no-flow nipple including a bolus delivery conduit disposed in the nipple cavity and in fluid communication with a reservoir of fluid. The bolus delivery conduit includes a conduit outlet attached to the nipple wall to output a bolus of fluid from the tip portion of the bolus delivery nipple via the outlet. A method for transitioning an infant subject to oral feeding is provided.
Abstract:
Described herein are methods and systems for extracting or determining subject motion from multi-channel electrical coupling in imaging of the subject, in particular in magnetic resonance (MR) imaging of the subject. The motion can be of a region of interest of the subject (such as an organ or specific tissue). Changes in the position of the subject and the subject's organs can be monitored by measuring how external coils, such as RF coils, couple to the subject and to one another and change the scattering of the RF coils, for example scattering of RF pulses transmitted by the coils. Changes in position influence this coupling and the scattering and can be detrimental to the quality of the imaging. The present methods and systems address and overcome this problem.
Abstract:
Disclosed embodiments describe techniques for body part analysis. Data is collected from a body sensor. The body sensor is coupled to a fabric attached to a body part. The body sensor provides electrical information based on a deformation of the body part. The data from the body sensor is analyzed to determine the deformation of the body part. An angle for the body part is determined based on the deformation. The data is augmented with additional data collected from an inertial measurement unit. Anchor points for the body part are determined, where the anchor points enable placement of the body sensor coupled to the fabric. The body part is treated, wherein the body part treatment is based on the analyzing. Additional data is collected from a second body sensor. The second body sensor is also coupled to the fabric.
Abstract:
A system and method are described for assessing muscle parameters (e.g., force(s) exerted, force dynamics, strength, voluntary muscle movement, etc.) in a diagnostic or therapeutic environment. The muscle parameter assessment system includes a force-gauging device and a computing device. The force-gauging device includes at least one pressure-sensing component (e.g., transducer, pressure sensor, etc.) configured to respond to a force applied by a subject and produce one or more output signals. The force-gauging device can further include electronic circuitry configured to convert the output signals into data indicative of a muscle parameter. The computing device is configured to build a muscle assessment protocol based on one or more patient characteristics and/or user input. The computing device is further configured to execute one or more muscle assessments via the force-gauging device, receive data from the force-gauging device, and determine one or more muscle measurements for a subject.
Abstract:
An apparatus for measuring cardiopulmonary data of a wearer, comprising: a sensor operable to produce a data stream indicative of movements of a wearer's body; a positioning device holding said sensor proximate an anatomical landmark on said wearer's body for conduction of mechanical vibrations from said wearer's body to said sensor; and a processor configured to receive said data stream and produce a rate signal indicative of cardiac or respiratory rate data of said wearer using an algorithm comprising peak detection;
Abstract:
An endoscopic pedicle probe has an elongate body with a proximal end and a distal end. A tip on the distal end is pushed into the pedicle to form the hole, and an enlarged head on the proximal end enables a surgeon to manipulate the probe. The body has an inner shaft with a cylindrical sleeve telescopically engaged over it. An endoscope extends through a longitudinal bore in the shaft, with a camera at the tip end connected with a monitor to enable a surgeon to visually observe the area being treated. A light extends through another bore to illuminate the area, and a further bore conducts irrigation fluid to and from the area. The sleeve is made of electrically non-conductive material and the shaft and tip are made of electrically conductive material to enable stimulation of nerves at the treatment area.
Abstract:
Disclosed is an implantable medical device and methods of using the medical device. The medical device may include a guided surface wave receive structure configured to receive a guided surface wave transmitted by a guided surface waveguide probe. The guided surface wave receive structure in the medical device generates an alternating current signal when the guided surface wave is received. The medical device includes a power circuit that is coupled to the guided surface wave receive structure. The power circuit includes a power storage circuit to store the power signal. The medical device includes a medical circuit that comprises a stimulus circuit, a monitoring circuit, and potentially other components. The stimulus circuit provides a stimulus to a human body. The monitoring circuit measures a characteristic of the human body.
Abstract:
A system (1) for processing the manometric measurements carried out by way of an anorectal probe (3) comprises one or more processing units, which include: an acquisition module (11) configured for acquiring management parameters of an anorectal manometry by an operator; a basal module (21) configured for processing the manometric measurements acquired during the basal maneuver of anorectal manometry in accordance with the management parameters; a squeeze module (22) configured for processing the manometric measurements acquired during the squeeze maneuver in accordance with the management parameters; an endurance module (23), configured for calculating the time interval between the instant at which a maximum value is measured during the squeeze maneuver, and the instant at which the pressure measured falls below a squeeze threshold; a strain (24) module configured for processing the manometric measurements acquired during the strain maneuver in accordance with the management parameters; and a memory module (25) configured for the registration of functions (F) and/or indexes calculated by the modules (11, 21, 22, 23, 24, 25) while processing said measures.