Abstract:
본 발명은 우수한 주조성과 양호한 인장특성을 가지면서 동시에 우수한 열전도도를 얻을 수 있어, 방열특성이 요구되는 각종 구조용 제품에 적용될 수 있는 다이캐스팅용 알루미늄 합금에 관한 것이다. 본 발명에 따른 다이캐스팅용 알루미늄 합금은, 아연(Zn) 5.5~8.5중량%, 마그네슘(Mg) 0.5~3.0중량% 및 철(Fe) 0.45~1.5중량%를 포함하고, 나머지는 알루미늄(Al)과 불가피한 불순물로 이루어진 것을 특징으로 한다.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung einerthermisch gespritzten, dünnwandigen Zylinderlaufbuchse zum Einfügen in ein Zylinderkurbelgehäuse sowie eine mit dem Verfahren hergestellte Zylinderlaufbuchse.
Abstract:
본 발명은 광폭 상용차용 휠허브 제조방법에 관한 것으로서, 더욱 상세하게는 단륜 타입의 광폭 상용차용 휠에 동력 전달 가능하게 결합되는 광폭 상용차용 휠허브 제조방법에 관한 것이다. 즉, 본 발명은 광폭 상용차용 알루미늄 휠을 반응고 단조공법 및 유동성형 공법으로 제조할 때, 이에 맞추어 알루미늄 휠과 결합되는 휠허브도 반응고 단조공법 및 유동성형 공법 등에 의하여 제조될 수 있도록 함으로써, 알루미늄 휠과 동일한 제조라인을 사용할 수 있을 뿐만 아니라, 제품 중량 감소를 비롯하여 소재 사용량 및 원가 절감, 단조 사이클 타임 감소, 소재 변경에 따른 인장 및 피로강도 증가 등을 이룰 수 있는 광폭 상용차용 휠허브 제조방법을 제공하고자 한 것이다.
Abstract:
The present application relates to a method for the production of an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast in a diecasting process. The aluminum alloy comprises the following alloy elements: silicon: 6 to 10 % by weight; nickel: 1.2 to 2 % by weight; copper: 8 to 10 % by weight; magnesium: 0.5 to 1.5 % by weight; iron: 0.6 to 1.5 % by weight; manganese: 0.2 to 0.4 % by weight; zirconium: 0.2 to 0.5 % by weight; vanadium: 0.1 to 0.3 % by weight; titanium: 0.1 to 0.5 % by weight, the aluminum alloy otherwise comprising aluminum and unavoidable contaminants.
Abstract:
The present invention relates to a magnesium-based alloy, and to a method for producing same. The method comprises the steps of: melting a magnesium alloy into a liquid state; adding a silicon compound to said molten magnesium alloy; exhausting the silicon compound through a full reaction between said molten magnesium alloy and said added silicon compound such that the silicon compound does not substantially remain in the magnesium alloy; and exhausting the silicon produced as a result of said exhaustion in the previous step such that the silicon may not substantially remain in said magnesium alloy.
Abstract:
본 발명은 마그네슘계 합금 및 그 제조 방법에 관한 것으로, 마그네슘 합금을 액상으로 용해하는 단계와, 상기 마그네슘 합금이 용해된 용탕에 실리콘화합물을 첨가하는 단계와, 상기 용탕과 상기 첨가된 실리콘화합물의 충분한 반응을 통해, 상기 실리콘화합물이 마그네슘 합금 속에 실질적으로 잔류되지 않도록 소진시키는 단계, 및 상기 소진 결과 생성된 실리콘을 상기 마그네슘 합금 속에 실질적으로 잔류되지 않도록 소진시키는 단계를 포함한다.
Abstract:
The aim of the present invention is to provide an aluminium alloy and an aluminium manufacturing method in which excellent quality aluminium melt can be achieved without carrying out heat treatment or using an auxiliary gas such as SF6, and mechanical properties can be improved by dispersing a high-strength compound in an aluminium base without carrying out separate heat treatment after casting. One aspect of the present invention provides an aluminium alloy manufacturing method comprising the steps of: forming a melt by melting aluminium and a magnesium master alloy comprising a compound containing at least two elements from among magnesium, calcium and silicon; and casting the melt.
Abstract:
본 발명은 열처리를 수행하지 않고 알루미늄 기지 내에 마그네슘-실리콘 화합물 분포시켜 기계적 특성을 향상시키는 알루미늄 합금 및 그 제조방법의 제공을 과제로 한다. 본 발명의 일 관점에 의하면, 마그네슘-실리콘 화합물을 포함하는 마그네슘 모합금 및 알루미늄을 용해하여 용탕을 형성하는 단계; 및 상기 용탕을 주조하는 단계;를 포함하는, 알루미늄 합금 제조방법이 제공된다.
Abstract:
Provided is an aluminum alloy which is produced in an eco-friendly manner and which has excellent oxidation resistance, and a method for producing the aluminum alloy. The oxidation-resistant aluminum alloy according to one aspect of the present invention is produced by adding, to molten aluminum, a magnesium master alloy in which calcium-based compounds are distributed in a magnesium base, and casting the mixture. The aluminum alloy of the present invention has an aluminum base which contains the calcium-based compounds therein. The oxidation resistance of the aluminum alloy of the present invention is greater than that of an aluminum alloy which does not contain the calcium-based compounds.
Abstract:
The present invention relates to a method of suppressing grain growth in an AL-ZN-MG-based aluminum alloy billet for thixoextrusion which is characterized by comprising a Sc-adding step of adding Sc of 0.05~0.15% to molten metal, and a heating step including more than 3 steps of heating treatment processes for the billet moulded from the molten metal. Here, Sc may be added to the molten metal as a master alloy of Al-2 weight percent, and there may be 5 to 10 minutes of sustain time after completion of each heating process. The grain growth rate of the aluminum alloy billet manufactured according to the method of the present invention is below 10% based on the area of the initial grain. Therefore, the method of the present invention is economical because the AL-ZN-MG-based aluminum alloy billet having the low grain growth rate can be manufactured without an additional equipment or cost. Besides, the method offers a billet that has a fine and uniform grain on the inside and the outside.